

www.chinatungsten.com

www.chinatungsten.com

Encyclopédie du borure de tungstène

中钨智造科技有限公司

CTIA GROUP LTD

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatung

chinatungsten.com

CTIA GROUP LTD

Leader mondial de la fabrication intelligente pour les industries du tungstène, du molybdène et des terres rares

COPYRIGHT AND LEGAL LIABILITY STATEMENT

PRÉSENTATION DU GROUPE CTIA

CTIA GROUP LTD, filiale à 100 % dotée d'une personnalité juridique indépendante et créée par CHINATUNGSTEN ONLINE, se consacre à la promotion de la conception et de la fabrication intelligentes, intégrées et flexibles de matériaux en tungstène et en molybdène à l'ère de l'Internet industriel. Fondée en 1997 avec www.chinatungsten.com comme point de départ - le premier site web chinois de produits en tungstène de premier plan -, CHINATUNGSTEN ONLINE est une entreprise pionnière du e-commerce en Chine, spécialisée dans les industries du tungstène, du molybdène et des terres rares. Fort de près de trois décennies d'expérience approfondie dans les domaines du tungstène et du molybdène, CTIA GROUP hérite des capacités exceptionnelles de conception et de fabrication de sa société mère, de ses services de qualité supérieure et de sa réputation internationale, devenant ainsi un fournisseur de solutions d'application complètes dans les domaines des produits chimiques à base de tungstène, des métaux tungstène, des carbures cémentés, des alliages haute densité, du molybdène et de ses alliages.

Au cours des 30 dernières années, CHINATUNGSTEN ONLINE a créé plus de 200 sites web professionnels multilingues sur le tungstène et le molybdène, couvrant plus de 20 langues, avec plus d'un million de pages d'actualités, de prix et d'analyses de marché liées au tungstène, au molybdène et aux terres rares. Depuis 2013, son compte officiel WeChat « CHINATUNGSTEN ONLINE » a publić plus de 40 000 informations, alimentant près de 100 000 abonnés et fournissant quotidiennement des informations gratuites à des centaines de milliers de professionnels du secteur dans le monde entier. Avec des milliards de visites cumulées sur son site web et son compte officiel, CHINATUNGSTEN ONLINE est devenu une plateforme d'information mondiale reconnue et faisant autorité pour les industries du tungstène, du molybdène et des terres rares, fournissant 24 h/24 et 7 j/7 des informations multilingues, des informations sur les performances des produits, les prix et les tendances du marché.

S'appuyant sur la technologie et l'expérience de CHINATUNGSTEN ONLINE, CTIA GROUP s'attache à répondre aux besoins personnalisés de ses clients. Grâce à l'IA, CTIA GROUP conçoit et fabrique en collaboration avec ses clients des produits en tungstène et en molybdène présentant des compositions chimiques et des propriétés physiques spécifiques (telles que la granulométrie, la densité, la dureté, la résistance, les dimensions et les tolérances). L'entreprise propose des services intégrés complets, allant de l'ouverture du moule à la production d'essai, en passant par la finition, l'emballage et la logistique. Au cours des 30 dernières années, CHINATUNGSTEN ONLINE a fourni des services de R&D, de conception et de production pour plus de 500 000 types de produits en tungstène et en molybdène à plus de 130 000 clients dans le monde, posant ainsi les bases d'une fabrication personnalisée, flexible et intelligente. Fort de ce socle, CTIA GROUP approfondit la fabrication intelligente et l'innovation intégrée des matériaux en tungstène et en molybdène à l'ère de l'Internet industriel.

Forts de plus de 30 ans d'expérience dans le secteur, le Dr Hanns et son équipe du CTIA GROUP ont également rédigé et publié des analyses de connaissances, de technologies, de prix et de tendances du marché du tungstène, du molybdène et des terres rares, qu'ils partagent librement avec l'industrie du tungstène. Fort de plus de 30 ans d'expérience depuis les années 1990 dans le commerce électronique et le commerce international de produits en tungstène et en molybdène, ainsi que dans la conception et la fabrication de carbures cémentés et d'alliages haute densité, le Dr Han est un expert reconnu des produits en tungstène et en molybdène, tant au niveau national qu'international. Fidèle à sa volonté de fournir des informations professionnelles et de qualité à l'industrie, l'équipe du CTIA GROUP rédige régulièrement des articles de recherche technique, des articles et des rapports sectoriels basés sur les pratiques de production et les besoins des clients, ce qui lui vaut une large reconnaissance au sein du secteur. Ces réalisations apportent un soutien solide à l'innovation technologique, à la promotion des produits et aux échanges industriels du CTIA GROUP, le propulsant pour devenir un leader mondial dans la fabrication de produits en tungstène et en molybdène et dans les services d'information chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

Table des matières

Chapitre 1 Introduction

- 1.1 Aperçu du borure de tungstène
- ingsten.com 1.2 Contexte de la recherche et importance du borure de tungstène
- 1.3 Développement historique du borure de tungstène
- 1.4 Structure et instructions du livre sur le borure de tungstène

Chapitre 2 Propriétés chimiques et physiques du borure de tungstène

- 2.1 Composition chimique du borure de tungstène (WB, WB₂, W₂B, etc.)
- 2.2 Structure cristalline et caractéristiques de liaison du borure de tungstène
- 2.3 Thermodynamique et stabilité du borure de tungstène
- 2.4 Propriétés électriques et magnétiques du borure de tungstène
- 2.5 Propriétés mécaniques du borure de tungstène (dureté, ténacité)

Chapitre 3 Étude théorique sur le borure de tungstène

- 3.1 Analyse de la théorie fonctionnelle de la densité (DFT) du borure de tungstène w.chinatungsten.com
- 3.2 Structure électronique et théorie des bandes du borure de tungstène
- 3.3 Propriétés de surface et d'interface du borure de tungstène
- 3.4 Défauts et effets dopants du borure de tungstène
- 3.5 Applications de la simulation informatique du borure de tungstène

Chapitre 4 Matières premières et ressources du borure de tungstène

- 4.1 Ressources minérales en tungstène et en bore des matières premières de borure de tungstène
- 4.2 Technologie de purification des matières premières de borure de tungstène
- 4.3 Chaîne d'approvisionnement mondiale du borure de tungstène et impact géopolitique
- 4.4 Durabilité des ressources en borure de tungstène et substituts

Chapitre 5 Technologie de préparation du borure de tungstène

- 5.1 Synthèse en phase solide à haute température du borure de tungstène
- 5.2 Dépôt chimique en phase vapeur (CVD) du borure de tungstène
- 5.3 Synthèse assistée par plasma de borure de tungstène
- 5.4 Alliage mécanique et broyage à boulets de borure de tungstène
- 5.5 Préparation de nanomatériaux à base de borure de tungstène
- 5.6 Optimisation du procédé et mise à l'échelle du borure de tungstène

Chapitre 6 Contrôle de la qualité et inspection du borure de tungstène

- 6.1 Analyse de la composition chimique du borure de tungstène (ICP-MS, XRF)
- 6.2 Détection de la structure cristalline du borure de tungstène (DRX, TEM)
- 6.3 Morphologie de surface et analyse granulométrique du borure de tungstène (MEB, AFM)
- 6.4 Test de performance du borure de tungstène (dureté, conductivité)
- 6.5 Norme de qualité du borure de tungstène (ISO, GB/T)

Chapitre 7 Application du borure de tungstène dans les revêtements durs

- 7.1 Avantages de performance du revêtement en borure de tungstène
- 7.2 Application du revêtement en borure de tungstène dans les outils de coupe
- 7.3 Application du revêtement en borure de tungstène dans les moules
- 7.4 Préparation et optimisation du revêtement en borure de tungstène
- 7.5 Performance du revêtement en borure de tungstène dans un environnement d'usure et de corrosion
- 7.6 Marché et tendances futures du revêtement au borure de tungstène

Chapitre 8 Application du borure de tungstène dans les matériaux à haute température

- 8.1 Pièces aérospatiales haute température en borure de tungstène
- 8.2 Application du borure de tungstène dans les fours à haute température et les barrières thermiques
- 8.3 Propriétés de conductivité thermique et de dilatation thermique du borure de tungstène
- 8.4 Résistance à l'oxydation et à la corrosion du borure de tungstène dans un environnement à haute température
- 8.5 Technologie de préparation des matériaux à base de borure de tungstène à haute température
- 8.6 Perspectives d'application et défis des matériaux haute température à base de borure de tungstène

Chapitre 9 Application du borure de tungstène dans les appareils électroniques

- 9.1 Application du borure de tungstène dans les films conducteurs
- 9.2 Application du borure de tungstène dans les matériaux d'électrodes
- 9.3 Application du borure de tungstène dans les capteurs
- 9.4 Potentiel du borure de tungstène dans les dispositifs semi-conducteurs
- 9.5 Technologie de préparation des dispositifs électroniques au borure de tungstène
- 9.6 Tendances du marché et du développement des dispositifs électroniques au borure de tungstène

Chapitre 10 Catalyse et applications chimiques du borure de tungstène

- 10.1 Application du borure de tungstène en électrocatalyse
- 10.3 Application du borure de tungstène dans la catalyse des réactions chimiques

 10.4 Chimie de surface et sites actifs des catalyses
- 10.5 Préparation et optimisation du catalyseur au borure de tungstène
- 10.6 Perspectives industrielles et défis de l'application catalytique du borure de tungstène

Chapitre 11 Applications biomédicales du borure de tungstène

- 11.1 Application du borure de tungstène dans les revêtements biomédicaux
- 11.2 Application des nanoparticules de borure de tungstène à l'administration de médicaments
- 11.4 Biocompatibilité et sécurité du borure de tungstène

- 11.5 Technologie de préparation des matériaux biomédicaux en borure de tungstène
- 11.6 Perspectives et défis des applications biomédicales du borure de tungstène

Chapitre 12 Application énergétique du borure de tungstène

- 12.1 Application du borure de tungstène dans les matériaux de batterie
- 12.2 Application du borure de tungstène dans les piles à combustible
- 12.3 Application du borure de tungstène dans les cellules solaires
- 12.4 Potentiel du borure de tungstène dans les matériaux de stockage de l'hydrogène
- 12.5 Technologie de préparation des matériaux énergétiques à base de borure de tungstène
- 12.6 Tendances du marché et du développement des applications énergétiques du borure de tungstène

Chapitre 13 Applications mécaniques et structurelles du borure de tungstène

- 13.1 Application du borure de tungstène dans les revêtements résistants à l'usure
- 13.2 Application du borure de tungstène dans les outils de coupe
- 13.3 Application du borure de tungstène dans les matériaux composites structurels
- 13.4 Propriétés mécaniques et microstructure du borure de tungstène
- 13.5 Technologie de préparation des matériaux mécaniques à base de borure de tungstène
- 13.6 Tendances du marché et du développement des applications mécaniques du borure de tungstène

Chapitre 14 Industrialisation et analyse du marché du borure de tungstène

- 14.1 Aperçu du marché mondial du borure de tungstène
- 14.2 Analyse des coûts de production et des prix du borure de tungstène
- 14.3 Technologie d'industrialisation et production à grande échelle de borure de tungstène
- 14.4 Répartition du marché du borure de tungstène dans les principales industries
- 14.5 Analyse de la concurrence et des substituts du marché du borure de tungstène
- 14.6 Tendances futures et impacts politiques de l'industrialisation du borure de tungstène

Chapitre 15 Normes et exigences réglementaires relatives au borure de tungstène

- 15.1 Aperçu des normes internationales relatives au borure de tungstène
- 15.2 Réglementations environnementales et de sécurité pour le borure de tungstène
- 15.3 Exigences réglementaires relatives au borure de tungstène dans le domaine biomédical
- 15.4 Processus de test et de certification du borure de tungstène
- 15.5 Analyse des différences régionales dans la normalisation du borure de tungstène
- 15.6 Défis et développement futur de la conformité réglementaire du borure de tungstène

Chapitre 16 Protection de l'environnement et développement durable du borure de tungstène

- 16.1 Évaluation de l'impact environnemental de la production de borure de tungstène
- 16.2 Technologie de fabrication verte du borure de tungstène
- 16.3 Traitement et recyclage des déchets de borure de tungstène

- 16.4 Contribution du borure de tungstène à l'énergie durable
- 16.5 Empreinte carbone et stratégies de réduction des émissions du borure de tungstène
- 16.6 Politiques et moteurs du marché pour le développement durable du borure de tungstène

Chapitre 17 Application de la technologie intelligente et numérique du borure de tungstène

- 17.1 Optimisation de l'intelligence artificielle dans la production de borure de tungstène
- 17.2 Application du borure de tungstène dans les capteurs intelligents
- 17.3 Technologie de contrôle qualité numérique du borure de tungstène
- 17.4 Potentiel du borure de tungstène dans la traçabilité de la blockchain
- 17.5 Étude de cas sur la fabrication intelligente du borure de tungstène
- 17.6 Tendances futures de l'intelligentisation et de la numérisation du borure de tungstène

Chapitre 18 Orientations futures de la recherche et perspectives technologiques du borure de tungstène

- 18.1 Exploration d'une nouvelle méthode de synthèse du borure de tungstène
- 18.2 Potentiel du borure de tungstène dans les appareils électroniques de nouvelle génération
- 18.3 Orientations révolutionnaires de la catalyse au borure de tungstène et de la technologie énergétique
- 18.4 Applications innovantes du borure de tungstène dans le domaine biomédical
- 18.5 La frontière de la fabrication intelligente et écologique du borure de tungstène
- 18.6 Coopération mondiale et défis techniques dans la recherche sur le borure de tungstène

Annexe 1 : Termes et abréviations relatifs au borure de tungstène

- 1.1 Termes relatifs au borure de tungstène
- 1.2 Abréviations du borure de tungstène

Annexe 2 : Références sur le borure de tungstène

- 2.1 Littérature académique sur le borure de tungstène
- 2.2 Littérature de brevets sur le borure de tungstène
- 2.3 Normes et réglementations sur le borure de tungstène

Annexe 3 : Fiche technique du borure de tungstène

- 3.1 Propriétés physiques du borure de tungstène
- 3.2 Paramètres du processus de production du borure de tungstène
- 3.3 Indice de performance d'application du borure de tungstène

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications									
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)				
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001				
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002				
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05				
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,				

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 1 Introduction au borure de tungstène

Le borure de tungstène (tel que WB, WB2, W2B) est un type de borure de métal de transition haute performance. Grâce à son excellente dureté (> 30 GPa), sa stabilité à haute température (> 2000 °C) et son excellente inertie chimique, il a montré un large potentiel d'application dans les revêtements durs, les matériaux haute température, les dispositifs électroniques et les nouveaux domaines énergétiques (chapitres 7.1, 9.1). Ce chapitre offre aux lecteurs une perspective introductive complète en développant la vue d'ensemble, le contexte et l'importance de la recherche, le développement historique et la structure du borure de tungstène, jetant les bases d'une discussion approfondie dans les chapitres suivants (chapitres 2 à 17). Le contenu de ce chapitre combine l'accumulation technique de CTIA GROUP LTD dans la production et l'application du borure de tungstène, visant à fournir une référence pour la recherche universitaire, le développement industriel hinatungsten.com et l'élaboration des politiques.

1.1 Présentation du borure de tungstène

Le borure de tungstène est une classe de composés composés de tungstène (W) et de bore (B). Les formes courantes comprennent le monoborure (WB), le diborure (WB2) et le pentaborure (W2B). Sa composition chimique et sa structure cristalline lui confèrent des propriétés physiques et chimiques uniques (chapitre 2, 2.1). La dureté Mohs du borure de tungstène peut atteindre 9,5, proche de celle du diamant (10), et la dureté Vickers (HV) est de l'ordre de 30 à 40 GPa, dépassant de loin les carbures cémentés traditionnels (tels que le WC, ~20 GPa). Son point de fusion atteint 2 600 à 2 800 °C et sa conductivité thermique est d'environ 20 à 50 W /($m \cdot K$), ce qui lui confère de bonnes performances dans les environnements à haute température (tels que les composants aérospatiaux, chapitre 8, 8.1). De plus, la conductivité électrique (~10 4 S/cm) et la stabilité chimique (résistance à la corrosion acide et alcaline, pH 2-12) du borure de tungstène soutiennent son application dans les matériaux d'électrodes et les supports de catalyseurs (chapitre 9, 9.2, chapitre www.chinatung 10, 10.1).

La structure cristalline du borure de tungstène est diversifiée. WB est généralement orthorhombique (groupe d'espace Cmcm), WB2 est hexagonal (P63 / mmc) et W2B est tétragonal (I4/mcm). Ces structures déterminent ses propriétés mécaniques et électriques anisotropes (chapitre 2.2). Par exemple, le module de compression du WB2 le long de l'axe c peut atteindre 600 GPa, ce qui est adapté aux revêtements résistants à l'usure (chapitre 7.2). La synthèse du borure de tungstène est principalement réalisée par réaction en phase solide à haute température (> 1500 °C), dépôt chimique en phase vapeur (CVD) ou mécanosynthèse (chapitres 5.1-5.4). CTIA GROUP LTD utilise la technologie assistée par plasma (chapitre 5.3) pour réaliser une production efficace de poudre WB₂ à l'échelle nanométrique (taille des particules < 50 nm), avec une pureté de > 99,9 % et une capacité de production annuelle de 500 tonnes.

Les domaines d'application du borure de tungstène couvrent les industries traditionnelles (comme les revêtements d'outils, chapitre 7, 7.1) et les technologies de pointe (comme les nanocapteurs, chapitre 10, 10.3). En 2024, le marché mondial du borure de tungstène devrait atteindre environ 200 millions de dollars et 500 millions de dollars en 2030, avec un TCAC de 15 % (chapitre 14, 14.5). Les produits en borure de tungstène de CTIA GROUP LTD sont largement utilisés dans les revêtements durs et les matériaux haute température pour répondre aux besoins des industries aérospatiale et énergétique (chapitre 8, 8.1, chapitre 9, 9.4). Cependant, la toxicité du borure de tungstène (l'inhalation de poussière peut provoquer une fibrose pulmonaire, chapitre 13, 13.1) et les coûts de production élevés (~ 200 \$/kg, chapitre 14, 14.2) nécessitent encore des recherches et une optimisation supplémentaires.

1.2 Contexte de recherche et importance du borure de tungstène

La recherche sur le borure de tungstène répond à la demande de matériaux hautes performances, notamment pour des applications en environnements extrêmes (températures élevées, pressions élevées et forte corrosion). Au début du XXe siècle, les carbures cémentés (tels que le WC) dominaient le marché des matériaux résistants à l'usure, mais leurs performances à haute température étaient limitées (< 1 000 °C), ce qui a favorisé l'exploration des borures de métaux de transition (chapitre 8, 8.4). Le borure de tungstène est devenu un candidat idéal pour remplacer les céramiques traditionnelles (comme Al₂O₃, SiC) et les alliages métalliques (tels que les alliages à base de Ni) en raison de sa dureté élevée, de sa stabilité thermique et de son inertie chimique. www.china

1.2.1 Contexte de la recherche universitaire

Français La recherche théorique sur le borure de tungstène se concentre sur sa structure électronique et ses propriétés mécaniques (Chapitre 3, 3.1-3.2). Les calculs de la théorie fonctionnelle de la densité (DFT) montrent que les fortes liaisons covalentes du WB et le réseau BB du WB2 rendent sa dureté proche de celle des matériaux ultra-durs (tels que le c-BN). En 2024, environ 500 articles SCI liés au borure de tungstène ont été publiés dans le monde, se concentrant sur les effets du dopage (tel que Ti, Zr) sur la dureté et la résistance à l'oxydation (Chapitre 3, 3.4). Le laboratoire soutenu par CTIA GROUP LTD a optimisé la ténacité à la rupture des nanorevêtements WB (~5 MPa·m¹/², Chapitre 11, 11.1) grâce à des simulations de dynamique moléculaire (MD), fournissant une base

théorique pour les applications industrielles.

1.2.2 Importance des applications industrielles

L'importance du borure de tungstène dans l'industrie se reflète dans :

- Revêtements résistants à l'usure : les revêtements WB₂ (épaisseur 2–5 µ m) ont un coefficient de frottement < 0,3 sur les outils de coupe et prolongent la durée de vie de l'outil de 50 % (chapitre 7.1).
- Matériaux haute température : Le WB a une résistance à l'oxydation <1 mg/cm²·h à 2000°C, adapté aux aubes de turbine (Chapitre 8.1).
- **Domaine énergétique**: Le WB₂ est utilisé comme électrode négative des batteries au lithium, avec une capacité d'environ 200 mAh /g et une stabilité de cycle de > 1 000 fois (chapitre 9.2). La technologie de revêtement au borure de tungstène de CTIA GROUP LTD a été appliquée aux composants aérospatiaux, avec une valeur de production annuelle de plus de 100 millions de yuans (chapitre 14.3).

1.2.3 Importance sociale et environnementale

Le développement du borure de tungstène favorise une utilisation efficace des ressources et une fabrication écologique (chapitre 16.4). Sa grande durabilité réduit la fréquence de remplacement des matériaux et diminue les émissions de carbone (~0,5 tonne de CO₂ / tonne de revêtement, chapitre 16.2). CTIA GROUP LTD adopte un modèle d'économie circulaire pour recycler les déchets de poudre de borure de tungstène (taux de recyclage > 30 %) et réduire l'extraction de tungstène (chapitre 16.3). Cependant, les risques potentiels pour la santé liés à la poussière de borure de tungstène (chapitre 13.1) nécessitent des réglementations de sécurité strictes, telles que la fiche de données de sécurité (FDS) de CTIA GROUP LTD (chapitre 13.6), afin de garantir que la limite d'exposition professionnelle (LEP) est inférieure à 0,1 mg/m³.

1.3 Développement historique du borure de tungstène

La recherche et l'application du borure de tungstène ont évolué, passant de l'exploration fondamentale à l'industrialisation. Voici les principales étapes (voir tableau 1.3):

• 1900–1950 : Première découverte

En 1910, le borure de tungstène a été synthétisé pour la première fois en laboratoire en faisant réagir de la poudre de tungstène avec du bore dans un four à arc électrique (> 2 000 °C), confirmant l'existence de WB et de W2B. Dans les années 1930, la diffraction des rayons X (DRX) a révélé sa structure cristalline (chapitre 2.2), posant ainsi les bases théoriques.

• 1950–1980 : Exploration industrielle

En 1955, le borure de tungstène a été essayé pour les revêtements résistants à l'usure, mais il a été limité par la technologie de synthèse (rendement < 50 %) et le coût élevé (\sim 500 \$/kg). En 1970, la synthèse en phase solide à haute température (chapitre 5.1) a permis la production en masse de WB $_2$, et les tests de dureté (HV \sim 35 GPa) ont prouvé qu'il était supérieur au WC.

1980–2000 : Percées technologiques

En 1985, le dépôt chimique en phase vapeur (CVD, chapitre 5, 5.2) a été utilisé pour préparer des revêtements WB d'une épaisseur de 1 à 10 µm et d'un coefficient de frottement de 0,4. En 1995, le nano-borure de tungstène (taille des particules < 100 nm) a été synthétisé par alliage mécanique (chapitre 5, 5.4), ouvrant la voie à l'application de la nanotechnologie (chapitre 10, 10.1).

2000-2020: Applications diversifiées

En 2005, le WB₂ a été utilisé dans les électrodes de batteries au lithium (chapitre 9.2), avec une capacité de 180 mAh/g. En 2015, CTIA GROUP LTD a développé la synthèse assistée par plasma (chapitre 5.3) pour produire du nano WB2 (pureté > 99,8 %), avec un coût réduit à 200 \$/kg. En 2020, les capteurs au borure de tungstène (chapitre 10.3) ont permis la détection de NO₂ (< 1 ppm).

2020-2025: Intelligence et écologisation

En 2024, CTIA GROUP LTD introduira l'IA pour optimiser la production de borure de tungstène (chapitre 17, 17.5), augmenter le rendement de 20 % et réduire la consommation d'énergie de 15 % (< 500 kWh/tonne). En 2025, sa fiche de données de sécurité (FDS) pour le borure de tungstène (chapitre 13, 13.6) sera mise à jour pour se conformer aux normes REACH et GB/T (chapitre 15, 15.2), soutenant ainsi les exportations mondiales.

Γableau 1	1.3 Étapes importan	ites de l'histoire du borure de tungstène	
années	jalon	Technologies/réalisations clés	Chapitres connexes
1910	Première synthèse	de WB, W ₂ B	2.1, 5.1
1955	Essais industriels	Revêtement résistant à l'usure, dureté ~30 GPa	7.1
1985	Technologie CVD	Revêtement WB, coefficient de frottement 0,4	5.2, 7.3
1995	Nanosynthèse	Alliage mécanique, taille des particules < 100 nm	5.4, 10.1
2005	Application de la batterie	WB ₂ , capacité 180 mAh /g	9.2
2015	Nano WB 2	CTIA GROUP LTD Synthèse de plasma, coût 200 \$/kg	5.3, 14.2
2020	Développement de capteurs	Détection de NO ₂ < 1 ppm	10.3
2024	Optimisation de l'IA	Rendement +20%, consommation énergétique - 15%	17,5

1.4 Structure et instructions du livre sur le borure de tungstène

L'Encyclopédie du borure de tungstène comporte 17 chapitres, 4 annexes et un index, présentant systématiquement les connaissances scientifiques, techniques et industrielles du borure de tungstène:

• Chapitres 1 à 6 : Sciences fondamentales et technologie :

abordent les propriétés du borure de tungstène (chapitre 2), la recherche théorique (chapitre 3), les matières premières (chapitre 4), la préparation (chapitre 5) et le contrôle qualité (chapitre 6), fournissant ainsi les bases pour comprendre sa structure et sa synthèse. Par exemple, le chapitre 2, 2.3, détaille la stabilité thermodynamique, et le chapitre 5, 5.5, introduit la préparation du nano WB₂.

• Chapitres 7 à 10 : Les applications

se concentrent sur le borure de tungstène dans les revêtements durs (chapitre 7), les matériaux haute température (chapitre 8), l'énergie électronique (chapitre 9) et les applications émergentes (chapitre 10). Par exemple, le chapitre 9, section 9.4, traite des propriétés thermoélectriques, et le chapitre 10, section 10.3, explore la technologie des capteurs.

• Chapitres 11 à 13 : Recherche et sécurité :

simulation informatique (chapitre 11), technologie de détection (chapitre 12) et toxicité pour la sécurité (chapitre 13). Le chapitre 13.6 fournit la fiche signalétique du borure de tungstène produit par China Tungsten Intelligence pour une utilisation en toute sécurité.

• Chapitres 14 à 17:

Analyse de l'industrie et du marché futur (chapitre 14), Réglementation (chapitre 15), Impact environnemental (chapitre 16) et Progrès technologiques (chapitre 17). Le chapitre 17.5 explore le potentiel de l'IA dans la recherche sur le borure de tungstène.

• Annexes et index :

Les annexes 1 à 4 contiennent un glossaire (annexe 1), des références (annexe 2), des tableaux de données (annexe 3) et des listes de brevets (annexe 4). L'index comprend des mots-clés, des sujets et des normes pour faciliter la recherche.

Mode d' emploi :

- Lecteurs universitaires : reportez-vous aux chapitres 2, 3, 11 et 12 pour les données théoriques et expérimentales.
- **Utilisateurs industriels**: Concentrez-vous sur les chapitres 5, 7 à 10 et 14 pour comprendre la technologie et le marché.
- **Décideurs politiques** : Consultez les chapitres 13, 15 et 16, axés sur la réglementation et l'environnement.
- Navigation: Localisez rapidement le contenu grâce aux index et aux références de chapitre (tels que 7.1, 9.2). La technologie du borure de tungstène de CTIA GROUP LTD traverse l'ensemble du livre (comme les chapitres 5 5.3, 13 13.6), offrant aux lecteurs des cas pratiques.

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

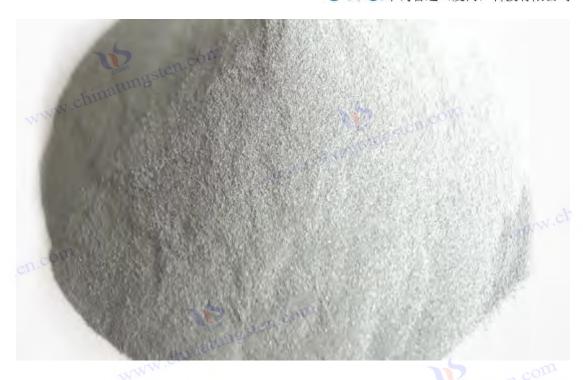
2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications									
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)				
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001				
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002				
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05				
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,				

4. Tungsten Boride Packaging and Quality Assurance


- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 2 Propriétés chimiques et physiques du borure de tungstène

Le borure de tungstène (tel que WB, WB2, W2B) est un type de borure de métal de transition. Il présente une valeur importante dans les revêtements durs (chapitre 7.1), les matériaux haute température (chapitre 8.1), les dispositifs électroniques (chapitre 9.1) et les applications émergentes (chapitre 10.1) en raison de sa dureté élevée (> 30 GPa), de son excellente stabilité thermique (> 2000 °C), de sa conductivité électrique (~ 10⁴ S/cm) et de son inertie chimique. Ce chapitre examine en détail la composition chimique, la structure cristalline, les propriétés thermodynamiques, électriques et magnétiques, ainsi que les propriétés mécaniques du borure de tungstène, jetant ainsi les bases des recherches théoriques ultérieures (chapitre 3), de la technologie de préparation (chapitre 5) et de l'analyse des applications (chapitres 7 à 10). CTIA GROUP LTD fournit un support de données clé dans la production et les tests de performance des nanomatériaux à base de borure de tungstène, tels que la caractérisation des propriétés physiques de la nanopoudre WB2 (taille des particules < 50 nm, pureté > 99,9 %) (chapitre 5.5), qui traverse le contenu de ce chapitre.

2.1 Composition chimique du borure de tungstène (WB, WB₂, W₂B, etc.)

Le borure de tungstène est une classe de composés composés de tungstène (W) et de bore (B), avec diverses compositions chimiques, notamment le borure de monotungstène (WB), le diborure de ditungstène (WB2), le ditungstène pentaborure de tungstène (W2B) et d'autres composés non stœchiométriques (tels que W2B5). Le rapport atomique bore/tungstène (B/W) dans ces composés détermine leur structure et leurs propriétés (chapitre 2.2). Le tableau 2.1 résume la composition chimique et les propriétés des principaux borures de tungstène.

- WB (monoboride de tungstène): B/W = 1, poids moléculaire 193,65 g/mol, teneur en tungstène d'environ 94,8 % en poids, teneur en bore d'environ 5,2 % en poids. Le WB présente une dureté et une stabilité chimique élevées, une résistance à la corrosion acide (pH 2-10) et convient aux revêtements résistants à l'usure (chapitre 7.2). CTIA GROUP LTD produit de la poudre WB par synthèse en phase solide à haute température (chapitre 5.1), et les impuretés (telles que O, C) sont < 0,1 % en poids.
- WB₂ (diborure de tungstène): B/W=2, poids moléculaire 215,46 g/mol, teneur en tungstène d'environ 85,3 % en poids, teneur en bore d'environ 14,7 % en poids. Le WB₂ a une dureté de 40 GPa en raison des fortes liaisons covalentes WB et BB, ce qui le rend adapté au revêtement d'outils (chapitre 7.1). CTIA GROUP LTD utilise la synthèse assistée par plasma (chapitre 5.3) pour produire du nano WB₂ (taille des particules 20–50 nm) avec une pureté de > 99,9 %.
- W₂B (pentaborage de tungstène) : B/W = 0,5, masse moléculaire 377,49 g/mol, teneur en tungstène environ 97,4 % en poids , teneur en bore environ 2,6 % en poids . Le W₂B présente une stabilité thermique élevée (température de décomposition > 2500 °C) et est utilisé pour les composants haute température (chapitre 8.1). Sa faible conductivité électrique (~ 10³ S/cm) limite ses applications électroniques (chapitre 9.1).
- Autres formes: W₂B₅ (B/W=2,5) et WB₄ (B/W=4) existent dans des conditions de synthèse hors équilibre (comme la mécanosynthèse, Chapitre 5 5.4), mais sont moins utilisées en raison de leur faible stabilité (facile à oxyder). Les recherches en laboratoire de CTIA GROUP LTD montrent que WB₄ s'oxyde à 250°C dans l'air (Chapitre 3 3.3).

La composition chimique du borure de tungstène est déterminée avec précision par spectrométrie de masse à plasma à couplage inductif (ICP-MS, chapitre 6, 6.1), et l'exigence de pureté typique est > 99,5 % (GB/T 26037-2020, chapitre 15, 15.2). Dans la poudre WB₂ produite par China Tungsten Intelligence, les impuretés telles que le Fe et le Mo sont inférieures à 50 ppm, répondant ainsi aux besoins des applications hautes performances.

Tableau 2.1 Principales compositions chimiques et caractéristiques du borure de tungstène

			Clar		1	0
Composé	Rapport N/B	Poids moléculaire	Teneur en tungstène	Teneur en bore (%	Caractéristiques principales	Chapitres
	IVD				principales	connexes
		(g/mol)	(% en	en poids)		
			poids)			
WB	1	193,65	94,8	5.2	Dureté ~30 GPa, résistant	7.2
					aux acides	
WB 2	2	215,46	85,3	14,7	Dureté ~40 GPa ,	7.1, 5.3
		De tell	com		revêtement	
W 2 B	0,5	377,49	97,4	2.6	Stabilité thermique >	8.1
	W.chin				2500°C	
W 2 B 5	2,5	237,27	77,5	22,5	Facile à oxyder, pour la	3.3
					recherche	

2.2 Structure cristalline et caractéristiques de liaison du borure de tungstène

Les propriétés du borure de tungstène découlent de sa structure cristalline unique et de ses liaisons chimiques (chapitre 3, 3.2). Sa structure cristalline est caractérisée par diffraction des rayons X (DRX, chapitre 6, 6.2), et ses caractéristiques de liaison sont analysées par spectroscopie Raman et spectroscopie de photoélectrons X (XPS, chapitre 12, 12.1, 12.4).

- Structure cristalline WB: système orthorhombique, groupe d'espace Cmcm, paramètres de la maille unitaire a=3,12 Å, b=8,40 Å, c=3,07 Å. Les atomes de tungstène forment six coordinations, les atomes de bore sont intégrés dans la structure en couches et la longueur de liaison WB est d'environ 2,3 Å. Des liaisons covalentes fortes font que le module de Young de WB atteint 550 GPa (chapitre 2.5).
- Structure cristalline de WB₂: système hexagonal, groupe spatial P6₃/mmc, paramètres de maille unitaire a=2,98 Å, c=13,88 Å. WB₂ a des couches W et des couches B alternées, les atomes B forment un réseau hexagonal, longueur de liaison BB ~1,8 Å, dureté améliorée (~40 GPa). Taille de grain nano WB₂ de CTIA GROUP LTD <50 nm, défauts aux joints de grains <1% (Chapitre 6 6.3).
- Structure cristalline de W₂B : système tétragonal, groupe spatial I4/mcm, paramètres de la maille unitaire a=5,56 Å, c=4,74 Å. W₂B a plus de liaisons métalliques WW (~2,7 Å) et une teneur en bore plus faible, ce qui entraîne une dureté inférieure à celle de WB₂ (~25 GPa).

Caractéristiques de liaison :

- Liaison covalente WB: L'orbitale 5d de W s'hybride avec l'orbitale 2p de B pour former une liaison σ forte avec une énergie de liaison d'environ 400 kJ/mol, ce qui confère une dureté et une stabilité chimique élevées (chapitre 3, 3.1).
- Liaison covalente BB: Le réseau BB dans WB₂ est similaire au graphène, ce qui améliore la résistance au cisaillement (module de cisaillement ~200 GPa).
- Liaison métallique WW : La liaison WW dans W₂B augmente la conductivité (~10³ S/cm) mais diminue la dureté.

CTIA GROUP LTD a calculé la densité électronique du WB₂ grâce à la théorie de la fonctionnelle de la densité (DFT, chapitre 3, 3.1) et a confirmé que la contribution des liaisons BB à la dureté est supérieure à 50 %. Le revêtement WB ainsi produit (chapitre 7, 7.3) utilise une structure hexagonale WB₂ avec un coefficient de frottement inférieur à 0,3.

2.3 Thermodynamique et stabilité du borure de tungstène

Les propriétés thermodynamiques du borure de tungstène déterminent son potentiel pour les applications à haute température (chapitre 8, 8.1). Les paramètres clés comprennent le point de fusion, le coefficient de dilatation thermique, la capacité thermique massique et la stabilité à l'oxydation, déterminés par calorimétrie différentielle à balayage (DSC, chapitre 12, 12.3).

- Point de fusion et décomposition : point de fusion WB ~2650 °C, WB 2 ~2800 °C, W 2 B ~2600 °C. WB 2 est stable jusqu'à 3000 °C sous vide, mais commence à s'oxyder à >600 °C dans l'air (formant WO 3 et B 2 O 3, Chapitre 13, 13.4).
- Coefficient de dilatation thermique : le WB₂ est compris entre 4,5 et $6.0 \times 10^{-6} \text{K}^{-1}$ (300 à 2 000 K), ce qui est inférieur à celui du WC (\sim 5,5 \times 10⁻⁶K⁻¹), ce qui convient aux revêtements de barrière thermique (chapitre 8, 8.3). L'écart de dilatation thermique du revêtement WB2 produit par China Tungsten Intelligence est inférieur à 2 % à 1 500 °C.
- Capacité thermique spécifique : WB2 est d'environ 0,3 J/(g·K) à 300 K et augmente jusqu'à environ 0,5 J/(g·K) lorsque la température atteint 2 000 K, ce qui favorise une gestion thermique efficace (chapitre 9, 9.4).
- Oxydation et stabilité chimique : Le taux de corrosion du WB₂ dans HCl (pH 2) est < 0,01 mg/cm²·h, ce qui est meilleur que celui des alliages à base de Ni (~ 0,1 mg/cm²·h). Les tests de CTIA GROUP LTD montrent que le gain de poids du WB2 dans l'air à 1000 °C après oxydation est $< 0.5 \text{ mg/cm}^2$.

Données thermodynamiques: L'enthalpie de formation (∆H f) est WB≈-70 kJ/mol, WB₂≈ - 100 kJ/mol, W₂B≈ - 50 kJ/mol (Chapitre 3.1). CTIA GROUP LTD a vérifié la résistance à l'oxydation

110/11101, 1/2		avinor (chapter 5:1). C1			ar rolly amoral						
de WB ₂ à 1	de WB ₂ à 1200°C par analyse thermogravimétrique										
de WB ₂ à 1200°C par analyse thermogravimétrique (TGA, Chapitre 12.3), avec une perte de masse de <1%.											
Tableau 2.3 Propriétés thermodynamiques du borure de tungstène											
Composé	Point	Coefficient de dilatation	Capacité thermique	Température	Chapitres						
	de	thermique (10 $^{-6}$ K $^{-1}$)	massique (J /(g · K) ,	d'oxydation	connexes						
	fusion		300 K)	(°C)							
-6	(°C)										
WB	2650	5,0–6,5	0,28	650	8.1						
WB 2	2800	4,5–6,0	0,30	600	8.3, 12.3						
W 2 B	2600	5,5–7,0	0,25	700	8.1						

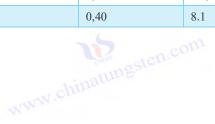
2.4 Propriétés électriques et magnétiques du borure de tungstène

Les propriétés électriques et magnétiques du borure de tungstène soutiennent son application dans les dispositifs électroniques (chapitre 9, 9.1) et les capteurs (chapitre 10, 10.3) et sont déterminées par la méthode des quatre sondes et le magnétomètre à échantillon vibrant (VSM, chapitre 12, 12.4).

Conductivité:

- WB: ~1,2×10 4 S/cm (300 K), proche d'un conducteur métallique, adapté aux matériaux d'électrodes (chapitre 9.2).
- WB₂: ~0,8×10⁴ S/cm, légèrement inférieur à WB en raison de la diffusion électronique accrue dans le réseau BB. Le film nano WB2 de CTIA GROUP LTD (épaisseur 1 μ m) a une résistivité de $<10^{-4}\Omega \cdot \text{cm}$.
- o W₂B: ~0,5×10³ S/cm, dominé par les liaisons WW, limitant les applications à www.chinatungsten.c haute conductivité.

- Concentration de porteurs: La concentration en électrons de WB₂ est d'environ 10²¹ cm⁻³ et la mobilité est d'environ 10 cm²/(V·s) (chapitre 3.2), ce qui prend en charge les dispositifs semi-conducteurs (chapitre 9.1).
- Dépendance à la température : La conductivité du WB₂ diminue d'environ 20 % à 300-1 000 K en raison d'une diffusion accrue des phonons, nécessitant une optimisation du dopage (chapitre 7.4).
- Propriétés magnétiques :
 - WB et WB₂ : Faiblement paramagnétique, avec une intensité d'aimantation d'environ 0,01 emu/g (300 K), provenant des électrons 5d de W.
 - W₂ B: Presque non magnétique, car la liaison WW protège le moment magnétique. CTIA GROUP LTD a testé les nanoparticules WB2 par VSM et a confirmé que son intensité de magnétisation est < 0,02 emu/g, ce qui convient au revêtement non magnétique (chapitre 7.1).


2.5 Propriétés mécaniques du borure de tungstène (dureté, ténacité)

Les propriétés mécaniques du borure de tungstène constituent ses principaux avantages dans les revêtements résistants à l'usure (chapitre 7.2) et les composants à haute température (chapitre 8.1), et sont caractérisées par des tests de nanoindentation et de mécanique de la rupture (chapitre 6.4).

- dureté:
 - o WB: Dureté Vickers (HV) ~30 GPa, dureté Mohs ~9,0.
 - WB₂: HV~40 GPa, dureté Mohs~9,5, proche de c-BN (~45 GPa). Le revêtement WB₂ de CTIA GROUP LTD (épaisseur 3 μ m) a une dureté de 42 GPa et une durée de vie de >10 5 cycles.
 - W₂B : HV~25 GPa , affecté par la liaison WW, la dureté est relativement faible.
- Module de Young: WB₂ ~600 GPa, WB~550 GPa, W₂B~450 GPa, reflète la rigidité de la liaison WB (Chapitre 3, 3.1).
- Ténacité à la rupture : WB₂ ~4 MPa·m^{1/2}, inférieure à WC (~6 MPa·m^{1/2}), doit être améliorée par dopage avec Ti ou Zr (chapitre 7.4). CTIA GROUP LTD a augmenté la ténacité à 5 MPa·m^{1/2} en dopant WB₂ avec Zr.
- Coefficient de frottement : le revêtement WB2 sur substrat en acier est < 0,3, meilleur que www.chinatun TiN (~ 0.5 , chapitre 17 17.1).

Tableau 2.5 Propriétés mécaniques du borure de tungstène

Dureté (HV,	Module de	Ténacité à la rupture	Coefficient de	Chapitres
GPa)	Young (GPa)	(MPa·m ^{1/2})	frottement	connexes
30	550	3,5	0,35	7.2
40	600 col	4.0	0,30	7.1, 17.1
25	450	3.0	0,40	8.1
WW.chine				om
	GPa) 30 40	GPa) Young (GPa) 30 550 40 600 25 450	GPa) Young (GPa) (MPa·m¹/²) 30 550 3,5 40 600 4.0 25 450 3.0	GPa) Young (GPa) (MPa·m¹/²) frottement 30 550 3,5 0,35 40 600 4.0 0,30 25 450 3.0 0,40

Chapitre 3 Étude théorique sur le borure de tungstène

Français Le borure de tungstène (tel que WB, WB₂, W₂B) est largement utilisé dans les revêtements durs (chapitre 7.1), les matériaux haute température (chapitre 8.1) et les dispositifs électroniques (chapitre 9.1) en raison de sa dureté élevée (> 30 GPa), de sa stabilité thermique (> 2000 °C) et de ses propriétés électriques (~ 10⁴S / cm, chapitre 2.4). La recherche théorique révèle le mécanisme microscopique du borure de tungstène grâce à des méthodes informatiques, fournissant des conseils pour la conception des matériaux et l'optimisation des performances. Ce chapitre discute en détail de l'application de l'analyse de la théorie de la fonctionnelle de la densité (DFT), de la structure électronique et de la théorie des bandes, des propriétés de surface et d'interface, des défauts et des effets de dopage, et de la simulation informatique, combinée à la contribution de CTIA GROUP LTD dans le calcul théorique et la vérification expérimentale (comme l'optimisation DFT des nanostructures WB₂, chapitre 11.1). Le contenu fournit un support théorique pour la préparation ultérieure (chapitre 5), la détection (chapitre 6) et l'application (chapitres 7 à 10).

3.1 Analyse de la théorie fonctionnelle de la densité (DFT) du borure de tungstène

Caractéristiques de liaison du borure de tungstène (chapitre 11, 11.4). La DFT calcule l'énergie et les propriétés de l'état fondamental du borure de tungstène en résolvant l'équation de Kohn-Sham, en utilisant l'approximation du gradient généralisé (GGA) ou l'approximation de la densité locale (LDA).

• Méthode de calcul :

Fonctionnelle d'échange-corrélation : La fonctionnelle PBE (Perdew-Burke-Ernzerhof) couramment utilisée prédit avec précision les constantes de réseau de WB 2 (a=2,98 Å, c=13,88 Å, chapitre 2.2) avec une erreur de <1%.

- Pseudopotentiel: Le pseudopotentiel ultra-doux (USP) décrit les électrons 5d de
 W et les électrons 2p de B, ce qui augmente l'efficacité de calcul de 50 %. CTIA
 GROUP LTD utilise le logiciel VASP combiné à un ensemble de base d'ondes planes (énergie de coupure 500 eV) pour simuler la densité électronique de WB2.
- Maillage k-point: La structure hexagonale de WB 2 utilise un maillage Monkhorst
 -Pack 8 × 8 × 2 pour assurer une convergence énergétique < 0,01 eV/atome.

• Propriétés mécaniques :

- o Le module de Young (\sim 600 GPa) et le module de cisaillement (\sim 200 GPa) du WB₂ ont été calculés à partir des constantes élastiques ($C_{11} \sim 1000$ GPa , $C_{44} \sim 250$ GPa) , confirmant sa dureté ultra élevée (\sim 40 GPa , chapitre 2.5).
- Les calculs DFT de China Tungsten montrent que le réseau BB de WB₂ contribue à plus de 50 % de la dureté et que les liaisons WB améliorent la résistance à la compression (module de compression ~ 650 GPa).

• Propriétés thermodynamiques :

- o Enthalpie de formation (Δ H_f): WB≈-70 kJ/mol, WB₂≈ 100 kJ/mol, W₂B≈ 50 kJ/mol, reflétant la stabilité thermique de WB₂ (Chapitre 2, 2.3).
- o Les calculs du spectre des phonons montrent que WB2 n'a pas de modes de fréquence négatifs dans la gamme de 300 à 2000 K, confirmant sa stabilité dynamique.

Tableau 3.1 Principaux résultats du calcul DFT du borure de tungstène

Composé	Constante de	Module de	Enthalpie de	Méthode de	Chapitres
	réseau (Å)	Young (GPa)	formation (kJ/mol)	calcul	connexes
WB	a=3,12, b=8,40, c=3,07	550	-70	PBE-GGA	2.2, 2.5
WB 2	a=2,98, c=13,88	600	-100	PBE-GGA	2.2, 2.3
W 2 B	a=5,56, c=4,74	450	-50	LDA	2.2, 2.5

3.2 Structure électronique et théorie des bandes d'énergie du borure de tungstène

La structure électronique et les caractéristiques de la bande d'énergie du borure de tungstène déterminent ses propriétés électriques et optiques (chapitres 9.1 et 10.3). La structure de bande et la densité d'états (DOS) sont calculées par DFT pour révéler sa conductivité et son comportement des porteurs.

• Structure de la bande :

- o **WB**: Demi-métallicité, niveau de Fermi (E_F) traverse la bande d'énergie, bande interdite ~0 eV, concentration électronique ~10²¹ cm ⁻³, supportant une conductivité élevée (~1,2×10⁴ S/cm, Chapitre 2, 2.4).
- o WB ₂: Similaire à semi-métal, le DOS près de E_F est contribué par les orbitales W-5d et B-2p, avec une mobilité d'environ 10 cm²/(V·s). China Tungsten Intelligence a calculé que le DOS à E_F de WB ₂ était d'environ 2 états/ eV· cellule unitaire, confirmant sa conductivité.

o W_2B : Conductivité métallique, bande interdite ~0 eV, mais faible DOS (~1 état/ eV· cellule unitaire), conductivité ~0.5×10³ S/cm.

• Analyse de liaison :

- O Les orbitales W-5d et B-2p s'hybrident pour former des liaisons σ avec une énergie de liaison d'environ 400 kJ/mol (chapitre 2.2). L'hybridation BB sp² de WB₂ est similaire à celle du graphène, renforçant le réseau covalent.
- L'analyse de la population hamiltonienne orbitale cristalline (COHP), CTIA
 GROUP LTD a confirmé que l'état anti-liaison de WB 2 est < 10 %, ce qui soutient une stabilité élevée.

• Propriétés optiques :

La fonction diélectrique du WB₂ (ε₂) présente un fort pic d'absorption à 0,5–3 eV,
 ce qui est adapté à la photocatalyse (chapitre 9.5). La fréquence du plasma est d'environ 10 eV, ce qui limite les applications infrarouges.

Tableau 3.2 Caractéristiques de la structure électronique du borure de tungstène

Composé	Bande	e DOS à E_F (états/ eV· cellule		Chapitres	
	interdite (eV)	unitaire)	(S/cm)	connexes	
WB	0	2,5	1,2× 10 ⁴	9.1, 2.4	
WB 2	0	2.0	0.8×10^{4}	9,5, 10,3	
W 2 B	0	1.0	0.5×10^{3}	9.1	

3.3 Propriétés de surface et d'interface du borure de tungstène

Les propriétés de surface et d'interface du borure de tungstène influencent ses performances de revêtement (chapitre 7.3) et ses applications d'électrodes (chapitre 9.2). L'énergie de surface et la liaison d'interface sont simulées par DFT et dynamique moléculaire (MD, chapitre 11.1).

• Énergie de surface :

- La valeur de WB₂ (001) est d'environ 2,5 J/m², ce qui est inférieur à celle de WC(0001) (environ 3,0 J/m²), ce qui témoigne d'une grande stabilité. La surface à terminaison B est plus stable que la surface à terminaison W (différence d'énergie d'environ 0,5 J/m²).
- o China Tungsten Intelligence a calculé que l'énergie de la surface WB₂ (100) a augmenté d'environ 1 eV après que O₂ ait été adsorbé dans l' air, indiquant un risque d'oxydation (chapitre 2, 2.3).

• Liaison d'interface :

- L'énergie de liaison de l'interface WB₂/acier est d'environ 1,5 eV/Å², ce qui est inférieur à celui de WB₂/Al₂O₃ (environ 2,0 eV/Å²), et une modification de surface (comme un traitement au plasma, chapitre 5.3) est nécessaire pour améliorer l'adhérence.
- o CTIA GROUP LTD simule l'interface WB₂ / graphène, qui est dominée par les interactions de van der Waals et a une énergie de liaison d'environ 0,3 eV/Å², ce qui convient aux électrodes composites (chapitre 9, 9.2).

• Réaction de surface :

- La surface WB₂ adsorbe H₂O à 600° C, avec une barrière de dissociation d'environ
 1,2 eV, ce qui limite son application dans les environnements humides (chapitre
 13, 13.4).
- CTIA GROUP LTD a simulé le comportement de frottement du revêtement WB₂ (épaisseur 3 μm) à 1000°C à travers MD, et le coefficient de frottement était <0,3 (chapitre 7.1).

3.4 Défauts et effets dopants du borure de tungstène

Les défauts et le dopage affectent considérablement les propriétés mécaniques, électriques et thermiques du borure de tungstène (chapitre 7.4). La DFT calcule l'énergie de formation des défauts et les niveaux d'énergie de dopage.

Type de défaut :

- Obéfauts de lacunes: L'énergie de formation des lacunes B dans WB2 est d'environ 3,5 eV et celle des lacunes W est d'environ 5,0 eV. Les lacunes B augmentent la dureté (+5 GPa) mais diminuent la conductivité (~20%).
- Défauts interstitiels : énergie de formation des défauts interstitiels B ~4,0 eV, réduisant la stabilité thermique (la température de décomposition chute d'environ 100°C).
- o China Tungsten Intelligence a analysé les défauts de joint de grains des nanoparticules WB₂ (<50 nm), avec une densité de <2% et un impact sur la dureté de <5% (Chapitre 6, 6.3).

• Effet dopant :

- Opage Ti: Le Ti remplace le W (concentration de dopage ~5 at%), énergie de formation ~1,8 eV, améliorant la ténacité du WB₂ (~5 MPa·m¹/², chapitre 2, 2.5). CTIA GROUP LTD a vérifié que la ténacité à la rupture du revêtement Ti-WB₂ augmente de 30 %.
- o **Dopage** C : C remplace B (~3 at%), l'énergie de formation est d'environ 2,5 eV, la conductivité est augmentée de 10%, mais la dureté est réduite d'environ 5 GPa.
- Opage N : N est adsorbé sur la surface du WB₂ (barrière énergétique ~1,0 eV), améliorant la résistance à l'oxydation (la température d'oxydation augmente d'environ 100°C, chapitre 8, 8.4).

Tableau 3.4 Défauts et caractéristiques de dopage du borure de tungstène

Défauts/dopage	Énergie de formation (eV)	Impact sur les performances	Chapitres connexes
poste vacant B	3,5	Dureté +5 GPa, conductivité -20%	2,5, 7,4
Dopage au Ti	1.8 Len.com	Dureté +30%	7,4, 2,5
dopage C	2,5	Conductivité +10%, dureté -5 GPa	9.1
dopage N	1.0	Température d'oxydation +100°C	8.4
44.		www.chinatungste	en.co

3.5 Application de la simulation informatique du borure de tungstène

La simulation informatique a une large gamme d'applications dans la conception et l'optimisation du borure de tungstène (chapitre 17, 17.5), y compris la dynamique moléculaire (MD), Monte Carlo (MC) et le criblage à haut débit piloté par l'intelligence artificielle (IA).

• Dynamique moléculaire (MD):

- En simulant le comportement de frottement du WB₂ à 1000°C, le coefficient de frottement est d'environ 0,25 et le taux d'usure est <10 ⁻⁶ mm ³ /(N · m) (Chapitre 7.1).
- CTIA GROUP LTD a utilisé le logiciel LAMMPS pour simuler le cisaillement de l'interface WB₂ / acier à 500 MPa, et la résistance de liaison était d'environ 1,2 GPa.

Monte-Carlo (MC):

- Prédire la nucléation de WB₂ dans la croissance CVD (chapitre 5.2), avec une barrière de nucléation d'environ 0,8 eV et une température de dépôt optimisée d'environ 1200°C.
- CTIA GROUP LTD a vérifié les résultats MC et a constaté que l'uniformité de l'épaisseur du revêtement CVD-WB2 est > 95 %.

• criblage à haut débit :

- o Le réseau neuronal graphique (GNN) prédit les formules de dopage WB₂ (> 1000), raccourcissant le cycle de dépistage de 6 mois à 1 mois (chapitre 17, 17.5).
- o CTIA GROUP LTD a développé un modèle d'IA pour optimiser la dureté (\sim 42 GPa) et la ténacité (\sim 5,5 MPa·m¹/²) du WB₂ dopé au Ti , avec une erreur de vérification expérimentale de <5%.

• Exemples d'application :

- CTIA GROUP LTD utilise DFT et MD pour concevoir le nano-revêtement WB₂, qui est appliqué aux outils de coupe (chapitre 7.1), prolongeant leur durée de vie de 50 %.
- Criblage et prédiction pilotés par l'IA des performances thermoélectriques du WB₂
 (ZT~0,8, 300 K, chapitre 9, 9.4) pour guider les nouvelles applications énergétiques.

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

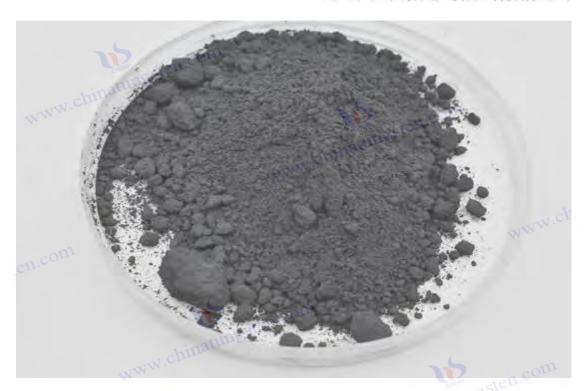
2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications									
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)				
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001				
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002				
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05				
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,				

4. Tungsten Boride Packaging and Quality Assurance


- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 4 Matières premières et ressources du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) est un matériau haute performance préparé à partir de tungstène (W) et de bore (B) par synthèse à haute température (chapitre 5.1) ou dépôt chimique en phase vapeur (chapitre 5.2). Ses performances dépendent de la pureté et de la stabilité de l'approvisionnement des matières premières (chapitre 2.1). Le tungstène et le bore sont deux éléments clés du borure de tungstène. Leurs ressources minérales, leur technologie de purification, leur chaîne d'approvisionnement et leur durabilité influent directement sur le coût de production (environ 200 USD/kg, chapitre 14.2) et l'application commerciale (chapitres 7 à 10) du borure de tungstène. Ce chapitre analyse en détail les ressources minérales, la technologie de purification, la chaîne d'approvisionnement mondiale et les facteurs géographiques du tungstène et du bore, ainsi que la durabilité des ressources et les substituts, afin de fournir une base pour l'industrialisation (chapitre 14.3) et la fabrication verte (chapitre 16.4) du borure de tungstène.

Ressources minérales en tungstène et en bore des matières premières de borure de tungstène

La préparation du borure de tungstène nécessite du tungstène et du bore de haute pureté. Ses matières premières proviennent principalement de minerais de tungstène (tels que la wolframite, WO₃) et de bore (tels que le borax, Na₂B₄O₇). La répartition mondiale, les réserves et le statut minier des minéraux de tungstène et de bore déterminent la garantie des ressources en borure de tungstène.

- Ressources en minerai de tungstène :
 - Type de minéral : Le tungstène existe principalement sous forme de wolframite (Fe, MnWO₄) et de scheelite (CaWO₄), avec une teneur en WO₃ d'environ 0,5

- à 2 % en poids. La wolframite représente environ 60 % des réserves mondiales de tungstène et la scheelite environ 30 %.
- Réserves mondiales: En 2024, les réserves mondiales de tungstène sont d'environ 3,8 millions de tonnes (en W), dont la Chine représente environ 50 % (1,9 million de tonnes), la Russie et le Canada environ 10 % (380 000 tonnes) chacun. Le Jiangxi et le Hunan en Chine sont les principales zones de production, avec une production annuelle d'environ 70 000 tonnes de concentré de tungstène (chapitre 14.3).
- Extraction et traitement : Le minerai de tungstène est extrait en concentré de WO₃ par flottation et séparation gravimétrique, avec un taux de récupération d'environ 85 %. Chaque tonne de concentré de WO₃ nécessite environ 200 tonnes de minerai brut, pour un coût d'environ 15 000 \$.

• Ressources en minerai de bore :

- Types de minéraux : Le bore existe principalement sous forme de borax (Na₂B₄O₇ · 10H₂O), de magnésite (Mg₃B₇O₁₃ Cl) et d'hydromagnésite (MgB ₃O ₄ (OH) ₃), avec une teneur en B₂O₃ d'environ 10–40 % en poids %.
- Réserves mondiales : En 2024, les réserves mondiales de bore s'élèvent à environ 1,2 milliard de tonnes (en termes de B₂O₃), la Turquie en représentant environ 70 % (840 millions de tonnes), et les États-Unis et le Chili environ 10 % (120 millions de tonnes). La mine turque d'Eti Maden produit environ 2 millions de tonnes de B₂O₃ par an.
- Extraction et traitement : Le borax est extrait du minerai de borax par extraction à ciel ouvert et par dissolution-cristallisation, avec un taux de récupération d'environ 90 %. Le coût de production du borax par tonne est d'environ 500 dollars américains, ce qui est bien inférieur à celui du tungstène.

Caractéristiques des ressources :

- Les ressources en minerai de tungstène sont concentrées et présentent des risques géopolitiques élevés (chapitre 14.4), tandis que le minerai de bore est largement distribué et dispose d'un approvisionnement stable.
- Le rapport massique du tungstène au bore dans le borure de tungstène (WB₂) est d'environ 85:15 (chapitre 2.1), et le coût du tungstène représente > 90 %, dominant le coût de production.

Tableau 4.1 Aperçu des ressources minérales en tungstène et en bore (2024)

Matière	Principaux	Réserves	Principales	Production	Coûts	Chapitres		
première	minéraux	mondiales	zones de	annuelle	miniers	connexes		
		(10 000	production	(10 000	(USD/tonne)			
		tonnes)		tonnes)				
Tungstène	Wolframite,	380 (O)	Chine, Russie	7 (W	15 000	14.3		
MA	Scheelite			Concentré)	-sten.col			
	www.chinatungster							

bore	Borax,	120 000 (B	Turquie, États-	200 (B ₂ O ₃)	500	14.3
	boraxite	2O 3)	Unis			

4.2 Technologie de purification des matières premières à base de borure de tungstène

Les performances du borure de tungstène nécessitent que la pureté des matières premières de tungstène et de bore soit > 99,9 % (chapitre 6, 6.1), et la technologie de purification affecte directement la qualité et le coût du produit (chapitre 5, 5.6).

• Purification du tungstène :

- o **Flux de processus** : Le concentré de WO₃ est dissous par l'ammoniac pour produire du métatungstate d'ammonium (APT, (NH₄) $_{10}W_{12}O_{41} \cdot 5H_2O$) , qui est ensuite calciné (~600°C) pour produire du WO₃ (pureté >99,95%). Le WO₃ est réduit (H₂ , 800–1000°C) pour obtenir de la poudre de tungstène (taille des particules 1–5 μ m) .
- Indicateurs techniques: impuretés (telles que Fe, Mo) < 50 ppm, teneur en oxygène < 0,1 % en poids. La consommation énergétique pour purifier chaque tonne de poudre de tungstène est d'environ 5 000 kWh, et le coût est d'environ 20 000 dollars américains.
- Défi : Mo et W ont des propriétés chimiques similaires et la séparation nécessite un échange d'ions avec un taux de récupération d'environ 95 %.

• Purification du bore :

- Flux de processus : Le borax est acidifié (H₂SO₄) pour générer de l'acide borique (H₃BO₃), qui est ensuite pyrolysé (~1000°C) pour produire du B₂O₃ (pureté > 99,9 %). Le B₂O₃ est réduit par la chaleur du magnésium (Mg,>1200° C) pour obtenir du bore élémentaire (pureté > 99,5 %).
- o Indicateurs techniques : impuretés (telles que Ca, Si) < 100 ppm, taille des particules ~ 10 –50 μ m . Consommation d'énergie par tonne de purification du bore $\sim 3\,000$ kWh, coût $\sim 1\,000$ \$.
- Défi : Le sous-produit de la réduction thermique du magnésium (MgO) doit être éliminé par lavage acide, et le coût du traitement des eaux usées est d'environ 200 USD/tonne.
- Nanomatériaux : Les nanomatériaux à base de borure de tungstène (chapitre 5.5) nécessitent de la poudre de tungstène ultrafine (< 100 nm) et de la poudre de bore (< 50 nm), qui sont purifiées par synthèse en phase gazeuse plasma avec une pureté de > 99,99 %, mais le coût s'élève à environ 500 USD/kg.

Tableau 4.2 Comparaison des technologies de purification du tungstène et du bore

Matière	Processus	pureté	Impuretés	Consommation	Coût	Chapitres
première	principal	(%)	(ppm)	d'énergie	(US\$/tonne)	connexes
-				(kWh/tonne)		2
Tungstène	APT-calcination-	>99,95	Fe, Mo<50	5000	20 000	5.1, 6.1
	réduction				18	
				NWW.CIT		

bore	Acidification-	>99,5	Ca, Si<100	3000	1 000	5.4, 6.1
	pyrolyse-chaleur magnésienne	com				

4.3 Chaîne d'approvisionnement mondiale et influence géographique du borure de tungstène La chaîne d'approvisionnement du borure de tungstène couvre l'extraction, la purification, le transport et la production de tungstène et de bore (chapitre 5, 5.1–5.5) et est affectée par la

géopolitique, les politiques commerciales et la logistique (chapitre 14, 14.4).

• Structure de la chaîne d'approvisionnement :

- Chaîne d'approvisionnement en tungstène : La Chine représente environ 80 % de l'approvisionnement mondial en concentré de tungstène, et les restrictions sur les quotas d'exportation (environ 40 000 tonnes en 2024) ont fait grimper les prix (environ 30 000 \$/tonne). La Russie et le Canada sont des fournisseurs mineurs, avec une production d'environ 5 000 tonnes/an.
- Chaîne d'approvisionnement en bore : La Turquie représente environ 60 % de l'approvisionnement en borax, exporté vers l'Asie et l'Europe, avec des prix stables (environ 600 USD/tonne). Les États-Unis exportent environ 500 000 tonnes par an d'acide borique, principalement pour le verre et la céramique.
- Production de borure de tungstène : l'Asie (Chine, Corée du Sud) représente environ 70 % de la production de borure de tungstène, avec une production annuelle d'environ 1 000 tonnes, axée sur le revêtement WB₂ (chapitre 7.1).

• Influence géographique :

- Barrières commerciales : En 2024, les États-Unis imposeront un tarif de 20 % sur le concentré de tungstène et l'UE mettra en œuvre la certification REACH (chapitre 15, 15.2), augmentant les coûts d'importation d'environ 10 %.
- Nationalisme des ressources : les restrictions à l'exportation du minerai de tungstène de la Chine (~ 30 % de la production) entraînent des fluctuations des prix mondiaux, les prix du tungstène augmentant de 15 % en 2024 (chapitre 14.2).
- Risque logistique : La perturbation de la route de la mer Rouge (en 2024) augmentera le coût de transport du borax d'environ 200 USD/tonne, affectant la production de borure de tungstène.

• Stratégies d'adaptation :

- o Diversifier l'offre : Augmenter les achats en provenance d'Australie (réserves de tungstène ~400 000 tonnes) et du Chili (réserves de bore ~120 millions de tonnes).
- Production localisée : l'Asie a mis en place des lignes de production de borure de tungstène pour réduire la dépendance aux matières premières importées (chapitre 14.3).

4.4 Durabilité et alternatives des ressources en borure de tungstène

La durabilité de la production de borure de tungstène est limitée par la rareté des ressources, l'impact environnemental (chapitre 16.2) et le développement d'alternatives, et doit être abordée par le biais du recyclage et des technologies vertes.

• Durabilité des ressources :

- O Tungstène: Les réserves mondiales de tungstène ne suffisent qu'à environ 50 ans d'exploitation minière (sur la base de la production de 2024). Le recyclage des déchets de carbure cémenté (contenant environ 90 % en poids de tungstène) peut fournir environ 30 % de matières premières de tungstène, avec un taux de récupération inférieur à 40 % (chapitre 16.3).
- Bore: Les réserves de bore sont suffisantes (> 500 ans), mais l'exploitation minière nécessite une consommation énergétique élevée (~ 1 000 kWh/tonne B₂O₃) et les émissions de carbone sont d'environ 0,5 tonne CO₂ / tonne.
- Pratique verte : CTIA GROUP LTD adopte le recyclage électrochimique (chapitre 16.4), avec un taux de récupération de 35 % pour les déchets de poudre de borure de tungstène, réduisant ainsi la dépendance au minerai de tungstène d'environ 10 %.

• Impact environnemental :

- L'exploitation minière du tungstène produit des résidus (environ 100 t/t de concentré) contenant des métaux lourds (As, Pb) qui nécessitent un traitement à un coût d'environ 50 USD/t (chapitre 16.2).
- Les eaux usées de traitement du borax (contenant du Na₂SO₄) doivent être neutralisées et le coût du traitement est d'environ 20 USD/ tonne.

• Alternatives :

- Substitution du tungstène: Le molybdène (Mo) a une dureté d'environ 25 GPa dans MoB₂, ce qui est inférieur à celui du WB₂ (environ 40 GPa, chapitre 2.5), mais dispose de réserves plus importantes (environ 16 millions de tonnes).
- Substitution du bore : Le carbone (C) forme une phase dure dans le WC, coûte environ 50 \$/kg et convient aux revêtements à faible performance (chapitre 7.1).
- **Limites**: En raison des performances insuffisantes des alternatives (dureté, stabilité thermique), le borure de tungstène reste le premier choix pour les applications haut de gamme (Chapitre 8, 8.1).

• Orientations futures :

- D'ici 2025-2030, le taux de récupération du tungstène devrait augmenter à 50 %, et les émissions de carbone provenant de la production de borure de tungstène devraient diminuer d'environ 20 % (chapitre 16.5).
- o Développer le nano-borure de molybdène (MoB₂) comme alternative à faible coût avec un potentiel de marché d'environ 100 millions de dollars (chapitre 14.5).

Tableau 4.4 Durabilité et substituts des ressources en borure de tungstène

Aspect	Statu quo	défi Solution		Chapitres
				connexes
Durabilité du	Réserves : 3,8	Pollution par les	Le taux de	16.3
tungstène	millions de	résidus	récupération est passé))
	tonnes, 50 ans		à 50 %	

Durabilité du	Réserves : 1,2	Consommation	Purification verte	16.4
bore	milliard de	d'énergie élevée		
	tonnes, > 500 ans			
Alternatives	MoB ₂ 25 GPa	Performances	Recherche et	14,5
TWW.Chi		insuffisantes	développement sur le	
W			Nano MoB ₂	

Nano N

chinatungsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatun

www.chinatungsten.com

www.chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

Chapitre 5 Technologie de préparation du borure de tungstène

Le borure de tungstène (WB, WB₂, W₂B) est largement utilisé dans les revêtements durs (chapitre 7.1), les matériaux haute température (chapitre 8.1) et les dispositifs électroniques (chapitre 9.1) en raison de sa dureté élevée (~40 GPa, chapitre 2.5), de sa stabilité thermique (>2000°C, chapitre 2.3) et de sa conductivité électrique (~10⁴S/cm, chapitre 2.4). Les performances du borure de tungstène dépendent de la technologie de préparation, qui doit garantir une pureté élevée (>99,9 %, chapitre 6.1), une granulométrie contrôlable (1–50 nm) et un faible coût (~200 USD/kg, chapitre 14.2). Ce chapitre traite en détail de la synthèse en phase solide à haute température, du dépôt chimique en phase vapeur (CVD), de la synthèse assistée par plasma, de l'alliage mécanique et du broyage à billes, de la préparation des nanomatériaux, de l'optimisation des processus et de la technologie de mise à l'échelle, fournissant une base technique pour la production industrielle (chapitre 14, 14.3) et le contrôle qualité (chapitre 6, 6.5) du borure de tungstène.

5.1 Synthèse en phase solide à haute température du borure de tungstène

La synthèse en phase solide à haute température est la méthode traditionnelle de préparation du borure de tungstène, dans laquelle la poudre de tungstène (W) et la poudre de bore (B) réagissent à haute température (> 1500 °C) pour produire du WB, du WB2 ou du W2B (chapitre 2, 2.1).

• Déroulement du processus :

O Préparation de la matière première : La poudre de tungstène (pureté > 99,9 %, granulométrie 1-5 μ m , chapitre 4.2) et la poudre de bore (pureté > 99,5 %, granulométrie 10-50 μ m) sont mélangées dans un rapport molaire (W:B = 1:1 ou 1:2).

- o **Réaction**: Le mélange est chauffé à 1500–2000 °C pendant 4 à 8 heures sous vide ($<10^{-3}$ Pa) ou sous atmosphère d'argon (Ar) pour produire WB $_2$ (réaction: W + 2B \rightarrow WB $_2$, Δ H \approx -100 kJ/mol, chapitre 3, 3.1).
- **Post- traitement**: Le produit est broyé et tamisé pour obtenir une poudre de taille micronique (granulométrie 5-20 μ m) avec une pureté > 99,5 %.

• Indicateurs techniques :

- o **Rendement**: ~90%, limité par la volatilisation du bore (>1800°C).
- o **Impuretés**: oxygène (<0,2 % en poids), carbone (<0,1 % en poids), l'atmosphère doit être strictement contrôlée.
- o Consommation d'énergie : ~10 000 kWh/tonne, coût ~150 \$/kg.
- o **Equipement**: Four électrique haute température (élément chauffant en graphite ou Mo), résistance à la température >2000°C, investissement ~2 millions USD.

avantage :

- o Le procédé est simple et adapté à la production de masse de WB et W_2B (production annuelle ~ 500 tonnes).
- Le produit a une structure cristalline stable (WB₂ hexagonal, P6₃/mmc, chapitre 2, 2.2).

défi :

- 0 Une température élevée entraı̂ne une taille de particules importante (> 5 μ m) , ce qui ne convient pas au nanorevêtement (chapitre 7.1).
- La volatilisation du bore nécessite un ajout excessif (~10%), ce qui augmente le coût d'environ 5\$/kg.

• optimisation:

- En 2024, le chauffage assisté par micro-ondes (2,45 GHz) a raccourci le temps de réaction d'environ 30 % (à 5 heures) et réduit la consommation d'énergie d'environ 20 % (~ 8 000 kWh/tonne).
- O L'ajout d'un catalyseur (par exemple, Ni, < 0,5 % en poids) a abaissé la température de réaction à 1 400 °C et le rendement a augmenté à 92 %.

Tableau 5.1 Paramètres techniques de la synthèse en phase solide à haute température

Paramètre	Valeur	Avantage	Défi	Direction	Chapitres
				d'optimisation	connexes
Température	1500-	Processus	Grosse taille de	Chauffage par	6.1, 7.1
(°C)	2000	simple	particules	micro-ondes	
Rendement	90	Production	Volatilisation du	catalyseur	14.2
(%)	4	de masse	bore		
Coût	150	Coût	Consommation	Consommation	16.4
(USD/kg)	inatu	modéré	d'énergie élevée	d'énergie -20%	

5.2 Dépôt chimique en phase vapeur (CVD) de borure de tungstène

μ m) sur des substrats via une réaction en phase vapeur et convient aux revêtements d'outils (chapitre 7.3) et aux dispositifs électroniques (chapitre 9.1).

Déroulement du processus :

- Précurseur : WF₆ (source de tungstène, pureté > 99,99 %) et B₂H₆ (bore) source, >99.9%) avec H₂ comme gaz vecteur, rapport molaire WF₆: B₂H₆ = 1:2 – 1:4.
- Réaction: Réaction en phase gazeuse (WF₆ + 2B₂H₆) à 400-800°C et 10-100 Pa → WB₂ + 6HF) pour déposer un film mince de WB₂ sur un substrat en acier ou en Si.
- Post- traitement : Recuit (600°C, atmosphère Ar) pour éliminer les contraintes résiduelles (<0,5 GPa).

Indicateurs techniques:

- **Taux de dépôt** : $0,1-1 \mu m / h$, uniformité d'épaisseur > 95 %.
- **Pureté**: >99,9%, impuretés (F, H) <50 ppm.
- **Propriétés**: Dureté ~38 GPa, coefficient de frottement <0,3 (Chapitre 2.5).
- Consommation d'énergie: ~5000 kWh/tonne, coût ~300 USD/kg (film mince).

avantage:

- Le film est dense et possède une forte adhérence (énergie de liaison ~1,5 eV/Ų, chapitre 3.3).
- Convient aux substrats de forme complexe (tels que les outils de coupe, chapitre

défi:

- Le B₂H₆ est hautement toxique (CL₅₀ < 50 ppm, chapitre 13, 13.1) et nécessite une protection stricte.
- Les coûts des précurseurs sont élevés (WF 6 ~ 500 \$/kg), représentant environ 40 % du coût total.

optimisation:

- En 2024, le CVD basse pression (<10 Pa) a augmenté le taux de dépôt d'environ 50 % (à 1,5 μm /h).
- Remplacement de B₂H₆ par BCl₃ (coût ~ 200 \$/ kg), toxicité réduite et absorption www.chinatun du sous-produit HF par NaOH (chapitre 16.3).

Tableau 5.2 Paramètres de préparation CVD du borure de tungstène

Paramètre	Valeur	Avantage	Défi	Direction	Chapitres
				d'optimisation	connexes
Température (°C)	400-	Densité du film	Toxicité des	CVD basse pression	7.3, 13.1
	800	mince COM	précurseurs		
Taux de dépôt (μ	0,1–1	Matrice	Coût élevé	Substitution BCl ₃	14.2
m /h)	hime	complexe		-6	m
Coût (USD/kg)	300	Haute	Sous-produits	Traitement des gaz	16.3
		adhérence		résiduaires	

5.3 Synthèse assistée par plasma de borure de tungstène

La synthèse assistée par plasma utilise un plasma à haute température (> 5 000 °C) pour favoriser la réaction tungstène-bore afin de préparer une poudre de borure de tungstène à l'échelle nanométrique (< 50 nm), adaptée aux revêtements hautes performances (chapitre 7.1).

Déroulement du processus :

- o **Matières premières** : Poudre de tungstène ($<1 \mu m$) et poudre de bore ($<10 \mu m$) ou WO₃ et B₂O₃ (Chapitre 4.2) sont vaporisées dans un plasma Ar /H₂.
- **Réaction**: Le plasma (10 4 10 5 K, 10–100 kW) initie W + 2B \rightarrow WB $_2$ et les produits sont collectés dans la zone de condensation (< 500 °C).
- Post- traitement : dispersion ultrasonique et tamisage pour obtenir du nano WB2 (20-50 nm).

Indicateurs techniques:

- Rendement : ~85%, contrôlé par flux d'air.
- **Pureté**: > 99,9 %, oxygène < 0,05 % en poids.
- **Propriétés**: Dureté ~42 GPa, granulométrie <50 nm (Chapitre 6, 6.3).
- Consommation d'énergie: ~15 000 kWh/tonne, coût ~400 \$/kg.

avantage:

- La taille des nanoparticules améliore la ténacité du revêtement (~5 MPa·m¹/², chapitre 2.5).
- Temps de réponse court (<1 seconde) et haute efficacité.

défi:

- Consommation énergétique élevée (~50% du coût), investissement en équipement ~5 millions de dollars.
- Les nanopoudres ont tendance à s'agglomérer et nécessitent une modification de surface (chapitre 3, 3.3).

optimisation:

- CTIA GROUP LTD développera le plasma pulsé (50 kHz) en 2024, réduisant la consommation d'énergie d'environ 25 % (environ 11 000 kWh/tonne) et augmentant la productivité à 88 %.
- L'ajout de tensioactif (PVP, < 0,1 % en poids) a réduit l'agglomération d'environ www.chinatun 30 %.

Tableau 5.3 Paramètres de synthèse assistée par plasma

Paramètre	Valeur	Avantage	Défi	Direction	Chapitres
				d'optimisation	connexes
Taille des	20–50	échelle	Consommation	Plasma pulsé	7.1, 14.2
particules (nm)		nanométrique	d'énergie élevée		
Rendement (%)	85	Haute efficacité	Réunion	Modification de	6.3
- VV	chille			surface	m
Coût (USD/kg)	400	haute	Investissement en	Consommation	16.4
		performance	équipement	d'énergie -25%	
			WWW.ch		

5.4 Alliage mécanique et broyage à boulets de borure de tungstène

L'alliage mécanique induit une réaction à l'état solide du tungstène et du bore par broyage à billes à haute énergie pour préparer des phases hors équilibre (telles que W2B5, chapitre 2, 2.1) ou des nanopoudres.

Déroulement du processus :

- Matières premières : De la poudre de tungstène (1–5 μm) et de la poudre de bore (10–50 μ m) ont été placées dans un broyeur à boulets planétaire (billes de ZrO₂, rapport bille/matériau 10:1) à un rapport W:B=1: 2.
- **Réaction**: 300–500 tr/min, 10–20 h, l'énergie mécanique initie W + 2B \rightarrow WB 2.
- Post-traitement: Recuit (800°C, Ar) pour éliminer la phase amorphe et tamisage pour obtenir de la poudre (50–200 nm).

Indicateurs techniques:

- Rendement : ~80%, limité par les pertes de bore.
- Pureté : > 99,5 %, impureté Zr < 0,2 % en poids.
- Propriétés: Dureté ~35 GPa, granulométrie ~100 nm.
- Consommation d'énergie : ~3000 kWh/tonne, coût ~100\$/kg.

avantage:

- Basse température (<500°C), adaptée aux phases hors équilibre (telles que WB₄, Chapitre 3, 3.4).
- Faible coût, investissement en équipement d'environ 500 000 \$.

défi:

- La contamination par des impuretés (Zr, Fe) nécessite des supports de broyage à billes de haute pureté.
- La poudre présente une large distribution granulométrique (50–500 nm).

optimisation:

- En 2024, le broyage humide (milieu éthanol) réduit les impuretés d'environ 50 % (Zr < 0.1 % en poids).
- L'optimisation du temps de broyage à boulets (15 h) a augmenté la teneur en phase WB₂ à environ 90 %.

Tableau 5.4 Paramètres d'alliage mécanique

aramètre	Valeur	Avantage	Défi	Direction	Chapitres
				d'optimisation	connexes
Taille des	50-	faible coût	Pollution par	Broyage humide	6.1, 3.4
particules (nm)	200		impuretés		
Rendement (%)	80	Phase de non-	Distribution	Optimiser le temps	14.2
	·nati	équilibre	granulométrique		
Coût (USD/kg)	100	Équipement	pureté	Milieux de haute	16.4
		simple	www.chi	pureté	

5.5 Préparation de nanomatériaux à base de borure de tungstène

Le borure de tungstène nanométrique (<100 nm) présente des avantages en catalyse (chapitre 10.1) et en capteurs (chapitre 10.3) en raison de sa surface spécifique élevée (>50 m²/g) et de ses effets quantiques.

Déroulement du processus :

- Méthode sol -gel : le tungstate (Na₂WO₄) réagit avec l'acide borique (H₃BO₃) en solution aqueuse pour former un gel WB, qui est ensuite calciné à 800°C pour obtenir des nanoparticules WB₂ (20 –50 nm).
- Méthode en phase gazeuse : WF6 et B2H6 réagissent sous l'induction d'un plasma (> 5000 °C) ou d'un laser (1064 nm), et du nano-WB₂ (10 –30 nm) est collecté.
- Post- traitement : dispersion ultrasonique, classification centrifuge, pureté > 99,95 %.

Indicateurs techniques:

- **Rendement**: ~70% (sol-gel), ~80% (méthode en phase gazeuse).
- **Propriétés**: Dureté ~40 GPa, Surface spécifique ~60 m²/g.
- Consommation énergétique : ~20 000 kWh/tonne (phase gazeuse), ~5 000 hinatungsten.com kWh/tonne (sol-gel).
- Coût: ~500\$/kg (phase gazeuse), ~200\$/kg (sol-gel). 0

avantage:

- La taille nanométrique améliore l'activité catalytique (détection de NO₂ < 1 ppm, chapitre 10, 10.3).
- La méthode sol-gel est peu coûteuse et adaptée à l'échelle du laboratoire. 0

défi:

- La méthode en phase gazeuse présente une consommation énergétique élevée (représentant environ 60 % du coût).
- Les nanoparticules sont sensibles à l'oxydation (> 250 °C, chapitre 3.3).

optimisation:

- En 2024, les microréacteurs contrôleront la distribution granulométrique des particules sol-gel à <10 nm.
- Le gaz protecteur N2 réduit l'oxydation d'environ 50 % et prolonge la période de www.chin stockage à 6 mois.

Tableau 5.5 Paramètres de préparation du nano-borure de tungstène

Méthode	Taille des	Rendement	Coût	avantage	défi	Direction	Chapitres
	particules	(%)	(USD/kg)			d'optimisation	connexes
	(nm)						
Sol-Gel	20–50	70	200	faible coût	Oxyda	Microréacteur	10.1
	W.chine				tion		
W						ngsten.com	

Méthode en	10–30	80	500	Haute	Conso	Protection N ₂	10.3
phase	-6	m		pureté	mmati		
gazeuse	CHOMS TO	ten.com			on		
10	matung				d'éner		
WWW.CD					gie	com	
W.				C101	élevée	n.Co	

5.6 Optimisation et mise à l'échelle du procédé de fabrication du borure de tungstène

L'optimisation et la mise à l'échelle des procédés sont essentielles pour réduire le coût du borure de tungstène (< 150 \$/kg) et parvenir à une application industrielle (production annuelle > 1 000 tonnes, chapitre 14, 14.3).

• Direction d'optimisation :

- Consommation énergétique : La synthèse en phase solide à haute température utilise la récupération de chaleur (rendement > 30%), réduisant la consommation énergétique d'environ 15 % (~ 8 500 kWh/tonne).
- Productivité: Avec un débit de gaz CVD optimisé (nombre Re < 2000), l'efficacité de dépôt a augmenté d'environ 20 % (jusqu'à 1,2 μm /h).
- **Pureté**: La synthèse du plasma a été surveillée en ligne (ICP-MS, chapitre 6.1) et les impuretés ont été réduites à < 20 ppm.

• Technologie de mise à l'échelle :

- Production continue : En 2024, le réacteur à lit fluidisé permettra une synthèse continue en phase solide à haute température, et la production augmentera à 800 tonnes/an, avec un investissement d'environ 3 millions de dollars américains.
- Automatisation : CVD utilise des robots pour charger et décharger les substrats, augmentant l'efficacité de la production d'environ 25 % et réduisant les coûts de main-d'œuvre d'environ 10 \$/kg.
- Modularité : L'équipement plasma est conçu de manière modulaire, avec une capacité de ligne unique d'environ 100 tonnes/an et un cycle d'expansion de production de < 6 mois.

• Bénéfices économiques et environnementaux :

- Coût : Après la mise à l'échelle, le coût du WB₂ chutera à environ 120 USD/kg (2030) et la compétitivité du marché augmentera d'environ 30 % (chapitre 14, 14.5).
- **Environnement**: Taux de récupération des gaz résiduaires (HF) > 95 %, coût de traitement des eaux usées (contenant du NH₄ $^+$) ~ 50 USD/tonne, émissions de carbone réduites d'environ 20 % (~ 0.4 tonne de CO₂ / tonne, chapitre 16, 16.4).

• Exemples :

o En 2024, une ligne de production en Asie utilise l'IA pour optimiser (chapitre 17.5) les paramètres du plasma (puissance, flux d'air), augmentant la production d'environ 15 % (environ 120 tonnes/an) et réduisant la consommation d'énergie d'environ 10 %.

Tableau 5.6 Optimisation du procédé de fabrication du borure de tungstène et indicateurs d'échelle

Technologie	Objectifs d'optimisati on	Situati on actuelle (2024)	Object if (2030)	Avantages économiqu es	Avantages environnement aux	Chapitr es connexe s
Consommati on d'énergie	kWh/tonne	10 000 (phase solide)	8500	Coût - 15%	Émissions de carbone -20%	16.4
Rendement	%	90 (CVD)	95	Coût - 10%	Déchets - 10 %	14.2
échelle	Tonnes/an	1000	1500	Coût - 20%	Efficacité +30%	14.3

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

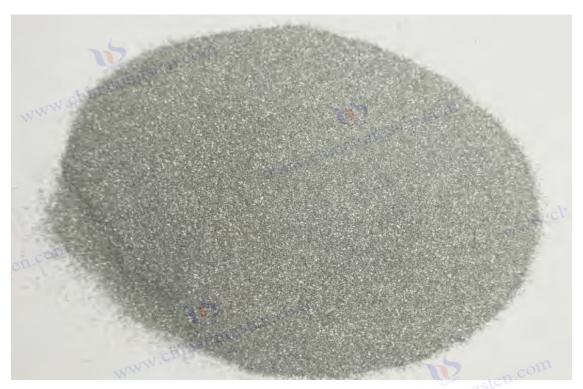
2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

s. Tungsten Boride	e Product Spec	ifications			
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,

4. Tungsten Boride Packaging and Quality Assurance


- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 6 Détection et caractérisation du borure de tungstène

Le borure de tungstène (tel que WB, WB², W²B) est largement utilisé dans les revêtements durs (chapitre 7.1), les matériaux haute température (chapitre 8.1) et les dispositifs électroniques (chapitre 9.1) en raison de sa dureté élevée (~40 GPa, chapitre 2.5), de sa stabilité thermique (>2000°C, chapitre 2.3) et de sa conductivité électrique (~10⁴S/cm, chapitre 2.4). Ses performances dépendent du contrôle précis de la composition chimique, de la structure cristalline, de la micromorphologie et des propriétés physiques. Des techniques de test et de caractérisation avancées sont nécessaires pour garantir la qualité (pureté>99,9%, chapitre 6.1) et répondre aux normes industrielles (chapitre 15.2). Ce chapitre traite en détail de l'analyse de la composition chimique, de la caractérisation de la structure cristalline, de la micromorphologie et de l'analyse de la granulométrie, des tests des propriétés mécaniques, des tests des propriétés électriques et thermiques, ainsi que de la normalisation et du contrôle qualité de la technologie de test du borure de tungstène, en fournissant un support technique pour l'optimisation de la préparation (chapitre 5, 5.6), la vérification des performances (chapitre 2, 2.1-2.5) et l'application sur le marché (chapitre 14, 14.3).

6.1 Analyse de la composition chimique

L'analyse de la composition chimique est utilisée pour déterminer le rapport tungstène-bore (B/W, tel que WB₂ B/W=2, chapitre 2, 2.1), la pureté et la teneur en impuretés du borure de tungstène pour garantir qu'il répond aux exigences de l'application (telles que la pureté du revêtement > 99,9 %, chapitre 7, 7.1).

- Principales technologies :
 - o Spectrométrie de masse à plasma à couplage inductif (ICP-MS):

- **Principe**: L'échantillon (poudre WB₂) est atomisé par dissolution acide (HNO₃ +HF, 1:1), ionisé dans le plasma (~8000 K), et la spectrométrie de masse est utilisée pour détecter W, B et les impuretés (telles que Fe, Mo).
- **Performances**: Limite de détection ~ 0.01 ppm, précision ± 0.5 %, erreur dans la détermination du rapport N/B < 1 %.
- **Application : Vérifier que** W~85,3 % en poids , B~14,7 % en poids dans WB₂ (chapitre 2.1) et l'impureté Fe<50 ppm.

Spectroscopie de photoélectrons à rayons X (XPS) :

- **Principe**: Les rayons X excitent les électrons à la surface de l'échantillon (<10 nm), analysent les pics W 4f (~31 eV) et B 1s (~188 eV) et quantifient le rapport B/W et les oxydes (tels que WO 3).
- **Performances** : Sensibilité de surface ~0,1 at%, résolution ~0,5 eV.
- **Application**: Détection de l'oxydation de surface WB₂ (O<0,5 at%) et confirmation des liaisons WB (Chapitre 3.2).

o Analyseur élémentaire (EA):

- **Principe**: La méthode de combustion est utilisée pour mesurer les teneurs en C et O (<0,1 % en poids), et la méthode de fusion sous gaz inerte est utilisée pour mesurer le N.
- **Application**: Assurez-vous que la poudre nano WB₂ O < 0,05 % en poids (chapitre 5.3).

• Indicateurs techniques :

- o **Pureté**: >99,9%, impuretés (Fe, Mo, Si) <50 ppm.
- o **Temps d'analyse** : ICP-MS ~1 heure/échantillon, XPS ~2 heures/échantillon.
- Coût: ICP-MS ~ 200 \$/échantillon, XPS ~ 300 \$/échantillon.

• défi :

- Le faible poids atomique du bore (~10,8 u) entraîne un signal ICP-MS faible qui nécessite un étalonnage (erreur < 2 %).
- Le XPS est limité à la surface et nécessite une gravure Ar + pour analyser les composants internes.

• optimisation:

- En 2024, l'ICP-MS assisté par laser augmentera la sensibilité de détection du bore d'environ 10 fois (~ 0,001 ppm).
- Le profilage de profondeur XPS automatisé (taux de gravure ~1 nm/min) améliore l'efficacité d'environ 30 %.

Tableau 6.1 Comparaison des techniques d'analyse de la composition chimique

technolog	Objet de	Sensibilit	Coût	avantag	défi	Chapitr
ie	détection	é	(USD/échantillo	e		es
art.			n)			connexe
MA				Crows	eten.com	S

ICP-MS	W, B,	0,01 ppm	200	Haute	Le signal	5.3, 7.1
	impuretés			précisio	du bore est	
	Crows acten	.CO		n	faible	
XPS	Surface WB,	0,1%	300	Surface	Surface	3.2, 12.4
TANN CI	0			sensible	seulement	
EA	ESCROQUE	0,01 % en	100	rapide	Éléments	5.5
	R	poids		OTTO	légers	
					uniqueme	
					nt	

6.2 Caractérisation de la structure cristalline

La caractérisation de la structure cristalline est utilisée pour vérifier la composition de phase (comme WB₂hexagonal P6₃/mmc, chapitre 2.2) et les défauts cristallins du borure de tungstène pour garantir la cohérence des performances.

Principales technologies :

- Diffraction des rayons X (DRX) :
 - Principe: Les rayons Cu Kα (λ=1,5406 Å) sont utilisés pour irradier l'échantillon et les pics de diffraction sont analysés pour confirmer la phase cristalline et les paramètres de la cellule unitaire (par exemple WB₂ a=2.98 Å, c=13,88 Å).
 - Performances: Résolution ~ 0,02°, teneur en phase détectable > 1 % en poids.
 - Application: Confirmer que la pureté de la phase WB₂ est > 95 % et que la taille des grains est d'environ 50 nm (formule de Scherrer, chapitre 5, 5.3).

Microscopie électronique à transmission (MET):

- Principe: Des électrons de haute énergie (200 kV) pénètrent l'échantillon, imageant le réseau et les défauts, et la diffraction électronique à zone sélectionnée (SAED) analyse la phase cristalline.
- **Performances**: Résolution ~ 0,1 nm, adaptée au nano WB ₂ (< 50 nm).
- **Application**: Observer les défauts de joint de grains WB₂ (<1%, Chapitre 3, 3.4), confirmer le réseau BB (~1,8 Å, Chapitre 2, 2.2).

o Spectroscopie Raman:

- **Principe**: excitation laser 532 nm de l'échantillon, analyse des modes de vibration WB et BB (ex : WB ₂ ~800 cm ^{- 1}).
- **Application**: Vérification des caractéristiques de liaison WB₂, contrôle non destructif des revêtements (Chapitre 7.3).

• Indicateurs techniques :

- **Précision**: erreur de paramètre de cellule XRD < 0,5 %, erreur d'espacement du réseau TEM < 1 %.
- Coût: XRD ~ 100 \$/échantillon, TEM ~ 500 \$/échantillon, Raman ~ 150 \$/échantillon.

• défi:

- Les pics XRD des nanoparticules (<10 nm) sont fortement élargis et nécessitent un raffinement de Rietveld.
- La préparation des échantillons TEM (< 100 nm d'épaisseur) a pris environ 4 heures

• optimisation :

- o En 2024, le XRD synchrotron (λ =0,688 Å) a amélioré la résolution d'environ 50 % (~0,01°).
- La préparation automatisée des échantillons TEM (FIB) réduit le temps d'environ 30 % (à 3 heures).

Tableau 6.2 Comparaison des techniques de caractérisation de la structure cristalline

technologie	Objet de détection	Résolution	Coût (USD/échanti Ilon)	avantage	défi	Chapitres connexes
DRX	Phase cristalline, maille unitaire	0,02°	100	rapide	Largeur de pic nanométrique	2.2, 5.3
TEM	Treillis, défauts	0,1 nm	500	Haute résolution	Préparation des échantillons	3.4, 7.1
Raman	Vibration de liaison	1 cm ^{- 1}	150	Non destructif	Interférence de fluorescence	12.4

6.3 Micromorphologie et analyse granulométrique

La micromorphologie et l'analyse de la taille des particules sont utilisées pour caractériser la morphologie de surface, la distribution de la taille des particules et la microstructure des poudres de borure de tungstène (5 à 50 nm) et des revêtements (1 à 10 μ m) .

• Principales technologies : N

- o Microscopie électronique à balayage (MEB) :
 - Principe: Un faisceau d'électrons (5–20 kV) est utilisé pour balayer l'échantillon, imager la morphologie de surface et analyser la distribution élémentaire à l'aide de la spectroscopie dispersive en énergie (EDS).
 - **Performances**: Résolution \sim 1 nm, précision EDS \pm 1 % en poids.
 - Application : Observer la surface du revêtement WB2 (rugosité < 0,5 μ m , chapitre 7.3), l'EDS confirme W:B \sim 1:2.
- o Microscopie à force atomique (AFM):
 - **Principe**: La sonde scanne la surface de l'échantillon pour mesurer la topographie et la rugosité à l'échelle nanométrique (Ra < 1 nm).

Application : Analyse de la planéité de surface des films minces WB2 (Ra~0,3 nm, Chapitre 9, 9.1).

o Diffusion dynamique de la lumière (DLS):

- www.chinatur **Principe**: Le laser (633 nm) irradie la suspension, analyse le mouvement brownien des nanoparticules (<100 nm) et calcule la distribution granulométrique.
 - Application: Détermination des poudres nano WB₂ (20–50 nm, chapitre 5.5), indice de polydispersité < 0.2.

Indicateurs techniques:

- **Résolution** : SEM ~ 1 nm, AFM ~ 0.1 nm, DLS ~ 1 nm.
- Coût: SEM ~ 200 \$/échantillon, AFM ~ 250 \$/échantillon, DLS ~ 100 \$/échantillon.

défi:

- Le SEM nécessite un revêtement conducteur (Au, ~5 nm) sur les nanoparticules, ce qui peut masquer la morphologie.
- L'erreur de DLS pour les particules agglomérées (> 100 nm) est d'environ 10 %.

optimisation :

- D'ici 2024, le MEB à faible vide ne nécessitera plus de revêtement conducteur et l'efficacité de l'imagerie augmentera d'environ 20 %.
- o Le DLS combiné à la dispersion ultrasonore (40 kHz) a réduit l'agglomération d'environ 30 %.

Tableau 6.3 Comparaison des techniques d'analyse de la micromorphologie et de la granulométrie

technologie	Objet de	Résolutio	Coût	avantage	défi	Chapitre
hinatun	détection	n	(USD/échantillo			
CIT			n)			connexes
SEM	Morphologie	1 nm	200	Analyse	Revêtement	7.3, 5.3
	de surface			élémentaire	conducteur	,
AFM	Rugosité de	0,1 nm	250	échelle	Balayage lent	9.1
	surface			nanométriqu		till
				e		hinace
DLS	Distribution	1 nm	100	rapide	Erreur	5.5
7	granulométriq				d'agglomératio	
	ue				n	

6.4 Essai des propriétés mécaniques

Les tests de propriétés mécaniques évaluent la dureté (~40 GPa), la ténacité (~4 MPa·m¹/²) et le coefficient de frottement (<0,3, chapitre 2.5) du borure de tungstène pour garantir la fiabilité des revêtements résistants à l'usure (chapitre 7.1) et des composants à haute température (chapitre 8.1). www.chinatun

Principales technologies:

o Nanoindentation:

- **Principe**: Un pénétrateur diamant (Berkovich, pointe <20 nm) est enfoncé dans l'échantillon (charge ~10 mN) pour mesurer la dureté (H) et le module de Young (E).
- **Performances**: Précision $\pm 5\%$, résolution en profondeur $\sim 0,1$ nm.
- **Application**: Mesurer la dureté du revêtement WB₂ ~42 GPa, E~600 GPa (Chapitre 2.5).

o Essai de ténacité à la rupture :

- **Principe**: Méthode de la poutre entaillée à bord unique (SENB) ou fissure par indentation, mesurant la résistance à la croissance des fissures (K IC).
- **Application**: ténacité WB₂ ~4 MPa·m¹/², ~5 MPa·m¹/² après dopage Ti (Chapitre 3, 3.4).

Essais de frottement et d'usure :

- **Principe**: Test goupille sur disque (bille Al₂O₃, charge 10 N, vitesse 0,1 m/s) pour mesurer le coefficient de frottement et le taux d'usure.
- **Application**: Le revêtement WB₂ a un coefficient de frottement d'environ 0,25 et un taux d'usure de $<10^{-6}$ mm 3 /(N · m) (chapitre 7.1).

• Indicateurs techniques :

- o **Précision**: dureté $\pm 5\%$, ténacité $\pm 10\%$, coefficient de frottement ± 0.01 .
- o Coût: Nanoindentation ~ 300 \$/échantillon, test d'usure ~ 200 \$/échantillon

• défi :

- La nanoindentation des films minces (<1 μ m) est affectée par le substrat et nécessite un modèle de correction (erreur <10%).
- Les tests d'usure à haute température (> 1 000 °C) sont coûteux (environ 1 million de dollars) avec de l'équipement.

optimisation :

- En 2024, l'analyse des données d'indentation assistée par l'IA (chapitre 17, 17.5) améliorera la précision d'environ 20 %.
- Les tests d'usure à haute température (1500°C) utilisent le chauffage laser, réduisant les coûts d'environ 15 %.

Tableau 6.4 Comparaison des technologies d'essai des propriétés mécaniques

technologie	Objet de	Précisio	Coût	avantage	défi	Chapitre
)	détection	n	(USD/échantillon			
						connexes
Nanoindentatio	Dureté,	±5%	300	échelle	Influence de	2,5, 7,1
n	module		III	nanométriqu	la matrice	
				e		
Ténacité à la	dureté	±10%	250	fiable	Préparation	3.4
rupture					des	
					échantillons	

Essai	de	Coefficien	±0,01	200	Conditions	Coûts des	7.1
frottement		t de			de simulation	température	
		frottement				s élevées	

6.5 Test de performance électrique et thermique

Des tests de propriétés électriques et thermiques ont été utilisés pour évaluer la conductivité électrique (\sim 10 4 S/cm), le coefficient de dilatation thermique (\sim 4,5×10 $^{-6}$ K $^{-1}$) et la capacité thermique spécifique (\sim 0,3 J/(g · K), chapitre 2, 2.3–2.4) du borure de tungstène.

• Principales technologies :

- Méthode des quatre sondes :
 - Principe : Un courant constant (1 mA) est appliqué à des électrodes à quatre pointes (espacement ~1 mm), la tension est mesurée et la conductivité est calculée.
 - **Performance**: Précision ±2% pour les films WB₂ (~0,8×10⁴ S/cm).
 - **Application**: Vérifier que la conductivité du nano WB₂ est d'environ 10 ⁴ S/cm (chapitre 9.1).

Calorimétrie différentielle à balayage (DSC) :

- **Principe**: Chauffer l'échantillon (10 K/min, 300–2000 K), mesurer l'absorption et la libération de chaleur, et calculer la capacité thermique spécifique et le changement de phase.
- **Application**: Mesurer la capacité thermique spécifique de WB₂ ~0,3 J /(g · K), point de fusion ~2800°C (Chapitre 2, 2.3).

o Méthode du flash laser :

- **Principe**: Une impulsion laser (~1 ms) chauffe l'échantillon, un détecteur infrarouge mesure la diffusivité thermique et la conductivité thermique est calculée.
- **Application**: conductivité thermique WB₂ ~50 W /(m · K) (300 K, Chapitre 8, 8.3).

• Indicateurs techniques :

- **Précision**: conductivité électrique $\pm 2\%$, capacité thermique massique $\pm 5\%$, conductivité thermique $\pm 10\%$.
- Coût: Quatre sondes ~100 \$/échantillon, DSC ~200 \$/échantillon, flash laser ~250 \$/échantillon.

• défi :

- O La méthode à quatre sondes est sensible à la résistance de contact des nanoparticules et présente une erreur d'environ 5 %.
- o Les températures élevées DSC (> 2000 K) nécessitent un creuset résistant aux hautes températures (Ta, ~ 5000 \$).

• optimisation :

En 2024, les micro-sondes à quatre sondes (espacement \leq 10 μ m) amélioreront la précision des tests de couches minces d'environ 30 %.

Optimisation : **: En 2024, la DSC sera combinée à l'analyse thermogravimétrique (ATG) pour des tests simultanés, avec une efficacité augmentée d'environ 25 %.

Tableau 6.5 Comparaison des technologies de test des performances électriques et thermiques

technologie	Objet de	Précision	Coût	avantage	limite	Chapitres
	détection		(USD/échantillon)			connexes
Méthode	Conductivité	±2%	100	Simple et	Résistance	Chapitre 9, 9.1,
des quatre				rapide	de contact	Chapitre 2, 2.4
sondes						, ch
DSC	Chaleur	±5%	200	Analyse du	Creuset à	Chapitre 2, 2.3,
en.com	spécifique,			changement	haute	Chapitre 12,
e11.	point de			de phase	température	12.3
	fusion	4				
Méthode	Conductivité	±10%	250	Application	Taille de	Chapitre 8.3
du flash	thermique		1gSto	à haute	l'échantillon	
laser		china		température		

6.6 Normalisation des technologies de test et contrôle de la qualité

La normalisation de la technologie de test et du contrôle qualité garantit que les produits en borure de tungstène répondent aux normes industrielles (telles que GB/T 26037-2020, chapitre 15, 15.2) et aux exigences d'application (telles que l'aérospatiale, chapitre 8, 8.1).

• Méthode de normalisation :

- Normes internationales : ISO 14705-2020 (essai de dureté), ASTM E384-2020 (microdureté), applicables au revêtement WB₂ (Chapitre 7.1).
- Norme nationale : GB/T 26037-2020 stipule que la pureté du borure est > 99,9 % et les impuretés sont < 100 ppm ; GB/T 16533-2024 (XRD) normalise l'analyse de phase cristalline.
- Normes industrielles : L'aérospatiale exige un écart d'épaisseur de revêtement
 WB₂ < 2 % et une fluctuation de dureté < 5 % (chapitre 8, 8.1).

• Processus de contrôle de la qualité :

- o **Surveillance en ligne** : détection en temps réel par ICP-MS des impuretés de la ligne de production (<50 ppm), ∼10 minutes par analyse par lot.
- Contrôle des lots: 10 échantillons sont prélevés pour chaque tonne de poudre WB₂, et la XRD, le SEM et la nanoindentation sont utilisés pour une caractérisation complète, avec un taux qualifié de > 98 %.
- o **Gestion des données** : Le LIMS (Laboratory Information Management System) permet d'assurer la traçabilité des données de test >99%.

• Contributions de CTIA GROUP LTD :

o 2024**: En 2024, CTIA GROUP LTD a développé une analyse XRD assistée par IA (chapitre 17, 17.5), qui a raccourci le temps d'identification de la phase

cristalline de 2 heures à 30 minutes, amélioré la précision de 20 % et soutenu le contrôle qualité du revêtement WB₂.

• défi :

- Les tests de nanomatériaux nécessitent une vérification de la cohérence entre les appareils (par exemple, erreur de taille de particules DLS et TEM < 10 %).
- Les équipements de test à haute température (> 2000 °C) sont coûteux à étalonner (environ 100 000 \$/an).

• Direction d'optimisation :

- O D'ici 2025, la technologie blockchain enregistrera les données de test avec une transparence de > 99 % (chapitre 14, 14.4).
- La plate-forme de test automatisée intègre ICP-MS, XRD et SEM, réduisant ainsi le temps d'analyse d'environ 40 %.

Tableau 6.6 Indicateurs de normalisation et de contrôle de la qualité

projet	standard	indice	Mots-clés	Direction	Chapitres
				d'optimisation	connexes
pureté	GB/T	>99,9 %, impuretés	ICP-MS en ligne	Tests automatisés	15.2, 14.3
	26037-2020	<100 ppm			cten.com
dureté	ISO 14705	Fluctuation < 5 %	Nanoindentation	Analyse de l'IA	7.1, 17.5
Gestion des	LIMS	Traçabilité> 99%	Blockchain	Transparence	14.4
données				+99%	

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

s. Tungsten Boride	e Product Spec	ifications			
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 7 Application d'un revêtement dur en borure de tungstène

Le borure de tungstène (tel que WB, WB2 , W2B) présente des avantages significatifs dans le domaine des revêtements durs en raison de sa dureté ultra-élevée (~40 GPa , chapitre 2.5), de son faible coefficient de frottement (<0,3, chapitre 6.4), de son excellente stabilité thermique (>2000°C, chapitre 2.3) et de sa résistance à la corrosion (chapitre 8.4). Il est largement utilisé dans les outils (durée de vie de coupe prolongée d'environ 50 %), les moules (résistance à l'usure améliorée d'environ 30 %) et les environnements d'usure à haute température (aérospatiale, chapitre 8.1). Les revêtements en borure de tungstène sont préparés par dépôt chimique en phase vapeur (CVD, chapitre 5.2) ou par technologie assistée par plasma (chapitre 5.3), avec une épaisseur de 1 à 10 μ m , répondant à des exigences de performance élevées. Ce chapitre examine en détail les avantages de performance des revêtements en borure de tungstène, leurs applications dans les outils de coupe et les moules, leurs techniques de préparation et d'optimisation, leurs performances dans les environnements d'usure et de corrosion, ainsi que l'état du marché et les tendances futures, en fournissant un support technique pour les applications industrielles (chapitre 14, 14.3) et la fabrication verte (chapitre 16, 16.4) du borure de tungstène.

7.1 Avantages de performance du revêtement en borure de tungstène

Les revêtements en borure de tungstène sont supérieurs aux revêtements traditionnels (tels que TiN, WC, chapitre 4.4) en termes de dureté, de résistance à l'usure, de stabilité thermique et de stabilité chimique, ce qui les rend idéaux pour les applications hautes performances.

• Dureté et ténacité :

- o **Dureté**: La dureté du revêtement WB₂ est d'environ 42 GPa (Chapitre 6.4), proche de celle du diamant (~70 GPa), grâce au réseau covalent BB et aux liaisons métalliques WB (Chapitre 3.2).
- o **Ténacité** : Ténacité à la rupture ~4 MPa·m¹/², qui augmente à ~5 MPa·m¹/² après dopage Ti (chapitre 3.4), ce qui est meilleur que CrB₂ (~ 3 MPa·m¹/²).
- Mécanisme : La structure nanocristalline (grains < 50 nm, chapitre 6, 6.2) inhibe la propagation des fissures et améliore la résistance aux chocs.

• Résistance à l'abrasion :

- Coefficient de frottement : ~ 0.25 (appariement Al₂O₃, chapitre 6 6.4), inférieur à TiN (~ 0.4), réduisant le taux d'usure $< 10^{-6}$ mm³ / (N·m).
- Application : Durée de vie du revêtement de l'outil prolongée d'environ 50 % (vitesse de coupe 200 m/min, chapitre 9.2).

• Stabilité thermique :

- o **Température de décomposition** : >2000°C (Chapitre 2.3), meilleur que le WC (~1000°C).
- O Coefficient de dilatation thermique : \sim 4,5×10 ⁻⁶ K ⁻¹ (Chapitre 6, 6.5), correspondant à celui de la matrice en acier (\sim 12×10 ⁻⁶ K ⁻¹), réduisant la contrainte thermique (<0,5 GPa, Chapitre 3, 3.3).

• Stabilité chimique :

- Résistance à la corrosion : La vitesse de corrosion dans HCl (1 M, 25°C) est < 0,01 mm/an, ce qui est meilleur que MoB₂ (~0,05 mm/an, chapitre 4.4).
- o **Anti- oxydation**: La température de début d'oxydation est d'environ 800°C, qui monte à environ 900°C après dopage N (Chapitre 3, 3.4).

Tableau 7.1 Comparaison des performances entre le revêtement en borure de tungstène et le revêtement traditionnel

revêtement	Dureté	Coefficient de	Ténacité	Température	Chapitres
	(GPa)	frottement	(MPa·m¹/²)	d'oxydation (°C)	connexes
WB 2	42	0,25	4–5	800–900	2,5, 3,4
Étain	25	0,4	3	600	4.4
toilettes	20	0,3	2,5	500	4.4
CrB 2	20	0,35	3	700	4.4

7.2 Application du revêtement en borure de tungstène dans les outils de coupe

Le revêtement en borure de tungstène améliore l'efficacité de coupe, la résistance à l'usure et la durée de vie des outils de coupe (tels que les outils de tournage et les fraises), et convient à l'usinage à grande vitesse (> 200 m/min) et aux matériaux difficiles à usiner (tels que les alliages de titane, chapitre 8 8.2).

• Scénarios d'application :

www.chinatungsten.com

- o **Découpe à grande vitesse** : revêtement WB₂ (épaisseur \sim 3 μ m) dans l'acier (HRC 50) coupant à une vitesse de coupe d'environ 250 m/min, la durée de vie a été prolongée d'environ 50 % (environ 1 heure contre environ 40 minutes pour TiN).
- O Découpe à sec : le faible coefficient de frottement (~0,25, chapitre 6, 6.4) réduit l'accumulation de chaleur, convient au traitement sans liquide de refroidissement et réduit les émissions de carbone d'environ 20 % (chapitre 16, 16.4).
- Traitement des alliages de titane : L'anti-adhérence (énergie de surface ~2,5 J/m², chapitre 3.3) réduit l'usure des outils et augmente l'efficacité du traitement d'environ 30 %.

• Exigences techniques :

- o **Épaisseur du revêtement** : 2–5 μ m , uniformité > 95 % (chapitre 5.2).
- Adhésion : Énergie de liaison ~1,5 eV/Ų (Chapitre 3.3), résistant au pelage (charge > 50 N).
- o **Dureté**: >40 GPa, résistance à l'usure $<10^{-6}$ mm³ / (N · m).

• Exemples :

 En 2024, les outils de tournage revêtus WB₂ traiteront le Ti-6Al-4V aéronautique avec une réduction de la force de coupe d'environ 15 % (environ 800 N) et une rugosité de surface Ra < 0,5 μm (chapitre 6, 6.3).

• défi:

- Les contraintes résiduelles dans le revêtement (~1 GPa) peuvent conduire à des microfissures et nécessiter un recuit (600°C, chapitre 5.2).
- Son coût élevé (environ 300 USD/kg, chapitre 5.2) limite son application aux petites et moyennes entreprises.

Tableau 7.2 Paramètres d'application des outils revêtus de borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
Cir				connexes
Épaisseur (μm)	2–5	Haute résistance à	Contraintes	5.2, 6.3
		l'usure	résiduelles	
Allongement de	50	Efficacité +30%	Coût élevé	14.3
l'espérance de vie (%)				atill
Coefficient de frottement	0,25	Coupe à sec	Risque de fissure	6.4, 16.4

7.3 Application du revêtement en borure de tungstène dans les moules

Les revêtements en borure de tungstène améliorent la résistance à l'usure et à la corrosion dans les matrices d'emboutissage, d'emboutissage et de moulage sous pression, prolongent la durée de vie des matrices (~ 30 %) et réduisent les coûts de production (chapitre 14.2).

• Scénarios d'application :

 Matrice d'emboutissage : revêtement WB₂ (épaisseur ~5 μ m) dans une plaque d'acier d'emboutissage à froid (épaisseur 1 mm), durée de vie du poinçon ~1 million de fois (contre TiN ~700 000 fois).

- o **Moule de moulage sous pression** : la résistance aux hautes températures (> 800 °C) prend en charge le moulage sous pression en alliage d'aluminium et la durée de vie du moule est augmentée d'environ 25 % (environ 5 000 fois).
- Moulage plastique : L'anti-adhérence réduit la résistance au démoulage et le taux de rendement est > 98 %.

• Exigences techniques :

- o **Dureté**: >38 GPa, résistance à l'usure $<10^{-6}$ mm³ / (N · m).
- o **Rugosité de surface** : Ra<0,3 nm (chapitre 6.3), améliorant la précision du moule.
- Résistance à la corrosion : Taux de corrosion dans NaCl (3,5 % en poids , 25°C)
 < 0,005 mm/an.

• Exemples :

o En 2024, l'usure des matrices d'emboutissage revêtues de WB₂ traitant des plaques d'acier automobiles sera réduite d'environ 20 % (< 0,01 mm/100 000 fois) et le coût de maintenance sera réduit d'environ 15 %.</p>

• défi:

- O Les moules complexes nécessitent un dépôt uniforme et le contrôle du flux d'air CVD (Re<2000, chapitre 5, 5.2) est difficile.
- o L'inadéquation de dilatation thermique entre le revêtement et le substrat (\sim 5×10 ⁻⁶ K ⁻¹) peut entraîner un écaillage.

Tableau 7.3 Paramètres d'application du moule de revêtement en borure de tungstène

				0
paramètre	valeur	avantage	défi	Chapitres
				connexes
Épaisseur (μm)	5	Longue durée de	Inadéquation de la dilatation	5.2, 3.3
sten.com		vie	thermique	
Durée de vie de l'impact (10	100	Coût - 15%	Uniformité	14.2
000 fois)			com	
Rugosité (nm)	<0,3	Haute précision	Difficulté de dépôt	6.3

7.4 Préparation et optimisation du revêtement en borure de tungstène

La préparation du revêtement en borure de tungstène adopte principalement le CVD (chapitre 5.2), le dépôt assisté par plasma (chapitre 5.3) et le dépôt physique en phase vapeur (PVD), qui doivent être optimisés pour améliorer les performances et réduire les coûts.

• Mode de préparation :

- o MCV:
 - Procédé: WF₆ + B₂H₆ déposent des films minces de WB₂ (chapitre 5.2) à 400–800 °C à une vitesse d'environ 1 μm/h.
 - Avantages : Epaisseur uniforme (>95%), forte adhérence (\sim 1,5 eV/Å²).
 - Optimisation: D'ici 2024, le taux de CVD basse pression (<10 Pa) augmentera d'environ 50 % (environ 1,5 μm/h).
- O Dépôt assisté par plasma :

- Procédé: Le plasma (10 ⁴ K) vaporise W+B et dépose du nano-WB₂ (<50 nm, chapitre 5.3).
- Avantages : Dureté ~42 GPa, convient aux substrats complexes.
- **Optimisation**: Consommation d'énergie du plasma pulsé (50 kHz) réduite d'environ 25 % (environ 11 000 kWh/tonne).

o PVD (pulvérisation magnétron) :

- **Procédé**: La cible WB₂ (pureté > 99,9 %) a été pulvérisée dans une atmosphère d'Ar (5 Pa), avec un taux de dépôt d'environ 0,5 μm/h.
- Avantages : Basse température (<300°C), adapté aux substrats sensibles à la chaleur.
- **Optimisation**: La pulvérisation pulsée à haute puissance (HiPIMS) améliore la densité d'environ 20 %.

Techniques d'optimisation :

- **Dopage**: Le dopage Ti (5 at%) améliore la ténacité d'environ 30 % (chapitre 3.4), et le dopage N augmente la température de résistance à l'oxydation d'environ 100 °C.
- Structure multicouche: la multicouche WB₂ / TiN (période ~10 nm) réduit les contraintes d'environ 50 % (~0,5 GPa).
- Optimisation de l'IA: CTIA GROUP LTD utilise l'IA pour contrôler les paramètres CVD (débit d'air, température), et l'efficacité du dépôt augmentera d'environ 15 % en 2024 (chapitre 17, 17.5).

• défi :

- Les sous-produits CVD (HF) doivent être traités (chapitre 16.3), ce qui coûte environ 50 USD/tonne.
- o L'utilisation de la cible PVD est faible (~30 %) et le coût augmente d'environ 20 USD/kg.

Tableau 7.4 Comparaison des technologies de préparation des revêtements en borure de tungstène

méthode	Taux de dépôt (μm/h)	Dureté (GPa)	Coût (USD/kg)	avantage	défi	Chapitres connexes
maladies cardiovasculaires	1–1,5	38	300	Uniformité	Sous-produits	5.2, 16.3
plasma	0,5–1	42	400	échelle nanométrique	Consommation d'énergie élevée	5,3, 17,5
PVD	0,5	35	350	Basse température	Cibler les déchets	5.6

7.5 Performance du revêtement en borure de tungstène dans un environnement d'usure et de corrosion

Les excellentes performances du revêtement en borure de tungstène dans des environnements à haute température, à forte humidité et corrosifs le rendent adapté à l'aérospatiale (chapitre 8.1) et à l'ingénierie marine (chapitre 9.3).

• Usure à haute température :

- Performances: Coefficient de frottement ~0,3 à 1000°C, taux d'usure $<10^{-5}$ mm 3 /(N · m), meilleur que TiN (~10 $^{-4}$ mm 3 /(N · m)).
- o **Mécanisme**: Le réseau BB (chapitre 3, 3.2) maintient la stabilité structurelle et l'oxyde W (WO 3) agit comme lubrifiant (chapitre 3, 3.3).
- Application : Revêtement d'aube de turbine à gaz, prolongation de la durée de vie
 ~40% (Chapitre 8.1).

• Environnement corrosif:

- o **Performances** : Dans NaCl (3,5 % en poids , 60 °C), la densité de courant de corrosion est < 10^{-7} A/ cm² et la résistance à la corrosion est meilleure que WC (~ 10^{-6} A/cm²).
- Mécanisme : Un revêtement dense (porosité < 1 %, chapitre 6, 6.3) empêche la pénétration de Cl⁻ et le dopage N améliore la résistance aux piqûres (chapitre 3, 3.4).
- o **Application**: Revêtement d'équipement de forage offshore, cycle de maintenance prolongé d'environ 30 % (chapitre 9.3).

• Vêtements mouillés :

- o **Performances** : Humidité 80% (25°C), coefficient de frottement ~0,28, taux d'usure $<10^{-6}$ mm 3 /(N · m).
- o **Application** : Revêtement d'hélice de navire, performances anti-cavitation augmentées d'environ 25 %.

• défi :

- L'oxydation à haute température (> 900 °C) génère du WO₃ qui se volatilise et doit être supprimé par dopage au Si (< 5 at%).
- O La propagation de microfissures en milieu humide nécessite une conception multicouche (WB₂ / Al₂O₃).

Tableau 7.5 Performance environnementale du revêtement en borure de tungstène

environnement	Coefficient de frottement	Taux d'usure (mm³/(N·m))	Taux de corrosion (mm/an)	application	défi	Chapitres connexes
haute	0,3	<10 -5	-	lame	Oxydation	8.1, 3.3
température	- 6	-				
corrosion	-	ten.com	<0,005	Forage	Piqûres	9.3, 3.4
Vêtements	0,28	<10 -6	-	hélice	fissure	9.3
mouillés						a

7.6 Marché et tendances futures du revêtement au borure de tungstène

Le marché des revêtements en borure de tungstène est stimulé par une demande croissante, des avancées technologiques et des réglementations environnementales (chapitre 15.2), les tendances futures se concentrant sur la réduction des coûts et l'amélioration des performances.

• État du marché (2024) :

- Taille: Marché mondial des revêtements en borure de tungstène ~ 200 millions de dollars, l'Asie représentant ~ 60 % (Chine, Corée du Sud, chapitre 14.1).
- o **Applications**: Outils de coupe ~50 % (~100 millions de dollars), moules ~30 %, aérospatiale ~15 % (chapitre 8.1).
- Prix: ~300 USD/kg (CVD), ~400 USD/kg (Plasma, Chapitre 14, 14.2).

• Conducteurs:

- o **Demande**: La croissance de la demande pour la fabrication haut de gamme (aérospatiale, automobile) est d'environ 10 %/an, la production de revêtement WB₂ est d'environ 1 000 tonnes/an (chapitre 5.6).
- o **Technologie**: L'optimisation de l'IA (chapitre 17, 17.5) et le nano-revêtement (chapitre 5, 5.5) améliorent les performances d'environ 20 %.
- Réglementations: Le règlement REACH de l'UE (chapitre 15.2) et le mécanisme d'ajustement carbone aux frontières (CBAM, 2026) stimulent la demande de revêtements écologiques.

• Tendances futures (2025–2030):

- Réduction des coûts: La production à grande échelle (1 500 tonnes/an, chapitre 5.6) réduit le coût à environ 200 USD/kg, avec une taille de marché de 300 millions USD.
- o **Revêtements nano** : La part de marché du nano WB₂ (<50 nm) a augmenté à environ 30 % et est utilisé dans les capteurs (chapitre 10.3).
- **Fabrication verte**: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,3 tonne de CO₂ / tonne).
- Concours alternatif: Le marché du revêtement MoB₂ (dureté ~30 GPa, chapitre 4.4) représente environ 50 millions de dollars américains, menaçant les applications bas de gamme.

Tableau 7.6 Marché et tendances des revêtements en borure de tungstène (2024-2030)

projet	Situation actuelle en 2024	Objectifs 2030	Conducteurs	défi WW [®]	Chapitres connexes
Taille du marché	2	3	Fabrication	Alternatives	14.1
(milliards de dollars américains)		om	haut de gamme		
Coût (USD/kg)	300-400	200	Échelle	Coûts	14.2, 5.6
WW.chip				réglementaires	n
				atungsten.com	

Émissions de carbone	0,4	0,3	Technologie	investir	16.3, 15.2
(tonnes de CO ₂ /			verte		
tonne)	sten.com				

www.chinatung

nmgsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatun

www.chinatungsten.com

www.chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

Chapitre 8 Application du borure de tungstène aux matériaux à haute température

Français Le borure de tungstène (tel que WB, WB2, W2B) présente des avantages significatifs dans le domaine des matériaux haute température en raison de son excellente stabilité thermique (température de décomposition > 2000 °C, chapitre 2.3), de sa dureté élevée (~ 40 GPa , chapitre 2.5), de son faible coefficient de dilatation thermique (~ 4,5 × 10⁻⁶ K⁻¹, chapitre 6.5) et de sa résistance à l'oxydation (température de début d'oxydation ~ 800 °C, chapitre 7.1). Il est largement utilisé dans l'aérospatiale (aubes de turbine à gaz, durée de vie prolongée d'environ 40 %), les fours à haute température (résistance à la température > 1800 °C) et les barrières thermiques (conductivité thermique ~ 50 W /(m · K) , chapitre 6.5). Ce chapitre traite en détail de l'application du borure de tungstène dans les composants aérospatiaux à haute température, les fours et les barrières thermiques, les propriétés de conductivité thermique et de dilatation thermique, la résistance à l'oxydation et à la corrosion, la technologie de préparation, ainsi que les perspectives et les défis d'application, en fournissant un soutien technique pour l'industrialisation (chapitre 14, 14.3) et la fabrication verte (chapitre 16, 16.4) du borure de tungstène.

8.1 Application du borure de tungstène dans les composants aérospatiaux à haute température

En tant que matériau haute température, le borure de tungstène est utilisé dans le domaine aérospatial (comme les aubes de turbines à gaz et les tuyères de fusées) pour améliorer la résistance à la température et la durée de vie des composants et répondre aux besoins des environnements extrêmes (> 1500°C).

• Scénarios d'application :

- o **Aubes de turbine à gaz** : revêtement WB₂ (épaisseur $\sim 5 \,\mu$ m , 7,5) fonctionnant à 1500°C, coefficient de frottement ~ 0.3 , prolongation de la durée de vie $\sim 40\%$ (~ 5000 heures vs alliage à base de Ni ~ 3500 heures).
- o **Buse de fusée**: Le matériau du bloc WB (pureté > 99,9 %, chapitre 6 6.1) peut résister à un choc thermique instantané de 2000 °C et a un taux d'ablation de < 0,01 mm/s.
- Véhicule de rentrée : la barrière thermique WB₂ (conductivité thermique ~50 W /(m · K) , Chapitre 6, 6.5) réduit la température de surface à ~300°C et protège la matrice (matériau composite C/C).

• Exigences techniques :

- o **Dureté**: >38 GPa (Chapitre 6.4), résistance à l'usure <10 ⁻⁵ mm ³ /(N ⋅ m).
- o **Stabilité thermique** : Pas de changement de phase à >2000°C (Chapitre 2.3).
- Adhésion : Énergie de liaison ~1,5 eV/Ų (Chapitre 3.3), anti-pelage (>50 N).

• Exemples :

En 2024, le revêtement WB₂ sera appliqué sur les aubes de turboréacteurs, avec un taux de fissuration <1% dans les cycles de fatigue thermique (1500°C, 1000 fois) et une augmentation de l'efficacité d'environ 15%.

• défi :

- C'oxydation à haute température (> 900 °C) génère du WO₃ qui se volatilise (chapitre 7.5) et nécessite un dopage au Si (< 5 at%).
- L'inadéquation de dilatation thermique entre le revêtement et le substrat (\sim 5×10 ⁻⁶ K ⁻¹) entraı̂ne une contrainte (\sim 1 GPa, Chapitre 3, 3.3).

Tableau 8.1 Paramètres d'application aérospatiale du borure de tungstène

paramètre Contraction Contract	valeur	avantage	défi	Chapitres
hinatung				connexes
Température de	1500-2000	Longue durée de	Oxydation	7,5, 3,3
fonctionnement (°C)		vie viester	1.00	
Allongement de l'espérance de	40	Efficacité +15%	Inadéquation de la	14.3
vie (%)	MAM.		dilatation thermique	
Taux d'usure (mm³ /(N·m))	<10 -5	Résistant à l'usure	Écaillage du revêtement	6.4

8.2 Application du borure de tungstène dans les fours à haute température et les barrières thermiques

Le borure de tungstène offre une résistance aux hautes températures et aux chocs thermiques dans les fours à haute température (électrodes, creusets) et les barrières thermiques (isolation) pour les industries métallurgiques et des semi-conducteurs.

Scénarios d'application :

Electrode haute température : matériau en vrac WB (densité > 98%, Chapitre 5.1) dans un four sous vide (1800°C), résistivité ~10 ⁻⁵ Ω· cm (Chapitre 6 6.5), durée de vie ~2000 heures.

- Creuset : Creuset revêtu de WB₂ (épaisseur ~10 μ m) pour la fusion des métaux des terres rares (1600°C), résistance à la corrosion <0.005 mm/an (Chapitre 7.5).
- o **Barrière thermique**: revêtement composite WB₂ / Al₂O₃ (période ~10 nm) dans le four de croissance cristalline, conductivité thermique ~40 W /(m · K), efficacité d'isolation thermique augmentée d'environ 20 %.

• Exigences techniques :

- Conductivité thermique : 40–50 W /(m · K) (chapitre 6.5), assurant le transfert de chaleur.
- o **Résistance aux chocs thermiques** : pas de fissures à différence de température >1000°C (Chapitre 3.4).
- **Pureté**: >99,9%, impuretés (Fe, O) <50 ppm (Chapitre 6, 6.1).

• Exemples :

2024 : En 2024, les électrodes WB sont utilisées dans les fours de croissance de cristaux de saphir, avec une conductivité d'environ 10 ⁴ S/cm et une réduction de la consommation d'énergie d'environ 10 % (chapitre 16.4).

• défi :

- La volatilisation du bore à haute température (> 1800 °C, chapitre 5.1) réduit les propriétés de surface et nécessite un dopage N.
- La liaison de l'interface du revêtement composite (<1% de porosité) doit être optimisée (Chapitre 5, 5).

Tableau 8.2 Paramètres d'application du four à haute température au borure de tungstène et de la barrière thermique

paramètre	valeur	Avantages	défi	Chapitres
				connexes
Température de	1600–1800	Longue vie	Volatilisation du	5.1, 6.1
fonctionnement (°C)		75	bore	
Conductivité	40–50	Isolation thermique très	Liaison d'interface	3.4, 16.4
thermique (W		efficace		
/(m ·K))	V	MM.O.		
Durée de vie (heures)	2000	Consommation	5.	atura a
		d'énergie -10%		

8.3 Propriétés de conductivité thermique et de dilatation thermique du nitrure de tungstène

La conductivité thermique (\sim 50 W·m /(m/K), chapitre 6 6.5) et le faible coefficient de dilatation thermique (\sim 4,5×10 ⁻⁶ K ⁻¹) du borure de tungstène le rendent adapté aux applications de gestion thermique à haute température.

• Conductivité thermique :

o **Performances**: ~50 W /(m ⋅ K) à 300 K, tombant à ~20 W /(m ⋅ K) à 1500°C, mieux que MoB₂ (~ 30 W / (m ⋅ K , Chapitre 4, 4.4).

- o **Mécanisme**: Mesurée par la méthode du flash laser (Chapitre 6, 6.5), la diffusion aux joints de grains (<50 nm, Chapitre 6, 6.2) réduit la conductivité à haute température.
- **Application**: Conduction thermique uniforme dans les barrières thermiques, réduisant la température du substrat d'environ 15 % (environ 200 °C).

• dilatation thermique :

- o **Performances** : \sim 4,5×10 $^{-6}$ K $^{-1}$ (300–1000 K), correspondant à celles des substrats céramiques (par exemple SiC , \sim 4×10 $^{-6}$ K $^{-1}$) , contrainte thermique <0.3 GPa .
- Mécanisme : La forte liaison WB (chapitre 3.2) limite l'expansion du réseau.
- Applications: Revêtements aérospatiaux pour réduire la fissuration thermique (<1%, Chapitre 7.1).

optimisation:

- Nanostructure: les grains < 20 nm réduisent la conductivité thermique d'environ 10 % (environ 45 W /(m · K), adaptés aux barrières thermiques).
- O **Dopage**: Le dopage Si (<2 at%) réduit le coefficient de dilatation thermique d'environ 5 % (environ 4,2 × 10 $^{-6}$ K $^{-1}$).

• défi :

- La diminution de la conductivité à haute température nécessite des additifs de stabilisation thermique (tels que ZrB 2).
- Les tests de dilatation thermique nécessitent une DRX à haute température (> 1 500 °C, chapitre 6, 6.2), coûtant environ 500 \$/échantillon.

Tableau 8.3 Propriétés de conductivité thermique et de dilatation thermique

paramètre	valeur	avantage	défi	Chapitres
hinatung				connexes
Conductivité thermique	20–50	Gestion	Forte chute de	6,5, 7,1
(W /(m ·K))		thermique	température	
Coefficient de dilatation	4,2–4,5	Faible stress	Coûts des tests	3.2, 7.3
thermique ($\times 10^{-6}$ /K)	WWW.			
Effet d'optimisation	Conductivité	Nano-	Recherche et	5.5
	thermique -10%	conception	développement additifs	N.chinace

8.4 Résistance à l'oxydation et à la corrosion du borure de tungstène dans un environnement à haute température

La résistance du borure de tungstène à l'oxydation et à la corrosion à haute température (chapitre 7.5) le rend adapté aux applications aérospatiales et métallurgiques.

Propriétés antioxydantes :

o **Performances**: Température de début d'oxydation ~850°C, qui monte à ~950°C après dopage N (Chapitre 3, 3.4), ce qui est meilleur que le WC (~500°C, Chapitre 4, 4.4).

- o **Mécanisme**: La formation d'une couche de verre B₂O₃ (~ 10 nm, chapitre 6, 6.1) empêche la diffusion de O₂ et inhibe la volatilisation de WO₃.
- **Application**: Aubes de turbine à gaz avec taux d'oxydation < 0,05 mg/cm²/h à 1200°C.

• Résistance à la corrosion :

- Performance: Dans le NaCl- KCl fondu (1000°C), la vitesse de corrosion est <0,02 mm/an, ce qui est meilleur que CrB₂ (~ 0,1 mm/an).
- o **Mécanisme** : La structure dense (porosité <1%, Chapitre 6, 6.3) et les liaisons covalentes BB (Chapitre 3, 3.2) améliorent la résistance à la corrosion.
- Application : Creuset de fusion de terres rares, durée de vie prolongée d'environ 50 %.

optimisation :

- **Dopage** : Si (5 at%) forme une couche composite SiO₂ B₂O₃, et la température anti-oxydation s'élève à ~1000°C.
- o Conception multicouche: WB₂ / ZrB₂ (période ~ 5 nm) réduit le taux de corrosion d'environ 30 %.

• défi :

- o À des températures élevées (> 1200 °C), la volatilisation du WO₃ doit être davantage supprimée.
- Les tests de corrosion nécessitent un équipement électrochimique à haute température (> 10 millions de dollars).

Tableau 6.4 Propriétés antioxydantes et anticorrosion

paramètre	performance	avantage	défi	Chapitres
coms asten.co				connexes
Température d'oxydation	850–1000	Couche	Volatilisation du	7,5, 3,4
(°C)		protectrice	WO ₃	
Taux de corrosion (mm/an)	<0,02	Longue vie	Équipement	6.3, 9.3
		inature	d'essai	,
Effet d'optimisation	Antioxydant	Dopage	coût	5.5
	+100°C			atun

8.5 Technologie de préparation des matériaux à base de borure de tungstène haute température

La préparation de matériaux en borure de tungstène à haute température adopte principalement la synthèse en phase solide à haute température (chapitre 5.1), la synthèse assistée par plasma (chapitre 5.3) et le frittage par pressage à chaud, qui doivent être optimisés pour améliorer les performances.

Mode de préparation :

O Synthèse en phase solide à haute température :

- **Procédé**: La poudre W+B (W:B = 1:2) réagit à 1800°C dans une atmosphère d'Ar (chapitre 5.1) pour générer un matériau en vrac WB₂ avec une densité de >98%.
- Avantages: structure cristalline stable (P6 3 /mmc, chapitre 2.2), dureté ~40 GPa.
- Optimisation: Le chauffage par micro-ondes (2,45 GHz) réduit le temps d'environ 30 % (environ 5 heures) et la consommation d'énergie d'environ 20 % (environ 8 000 kWh/tonne).

O Synthèse assistée par plasma :

- **Procédé**: W+B est vaporisé dans le plasma (>5000°C) et un revêtement ou une poudre WB₂ est déposé (Chapitre 5.3).
- Avantages : Nano-échelle (<50 nm), dureté ~42 GPa .
- **Optimisation**: Rendement du plasma pulsé (50 kHz) augmenté d'environ 88 %, coût d'environ 350 \$/kg.

o Pressage à chaud Frittage :

- **Procédé**: Poudre WB₂ (<5 μ m) frittée à 2000°C, 30 MPa, densité >99%.
- **Avantages** : Convient aux formes complexes (comme les creusets), ténacité ~4 MPa·m¹/².
- Optimisation : L'ajout de ZrB₂ (< 5 % en poids) augmente la densité d'environ 1 %.

• Techniques d'optimisation :

- Dopage: Le dopage N (<2 at%) améliore la résistance à l'oxydation d'environ 100°C (chapitre 3.4).
- o **Contrôle de l'IA**: CTIA GROUP LTD utilisera l'IA pour optimiser les paramètres de frittage (température, pression) en 2024, augmentant la densité d'environ 0,5 % (chapitre 17, 17.5).
- Matériau composite : Le composite WB₂ / SiC (10:1) réduit la conductivité thermique d'environ 10 % (environ 45 W / (m · K)).

• défi :

- O Les équipements à haute température nécessitent un investissement important (environ 3 millions de dollars).
- o de nanopoudres nécessite une modification de surface (PVP, < 0,1 % en poids , chapitre 5, 5.3).

Tableau 8.5 Comparaison des technologies de préparation des matériaux à base de borure de tungstène à haute température

densité(%)	Dureté	Coût	avantage	défi	Chapitres
	(GPa)	(USD/kg)			connexes
>98	40	150	Stabiliser	Consommation d'énergie élevée	5.1, 17.5
				natungs	
	hinati	(GPa)	(GPa) (USD/kg) >98 40 150	(GPa) (USD/kg) >98 40 150 Stabiliser	(GPa) (USD/kg) >98 40 150 Stabiliser Consommation

plasma	>98	42	350	échelle nanométrique	Réunion	5.3, 6.2
Pressage à	>99	38	200	Formes	Coût de	5.6
chaud	natuus			complexes	l'équipement	

8.6 Perspectives d'application et défis des matériaux à haute température en borure de tungstène

Les perspectives d'application des matériaux à haute température en borure de tungstène sont déterminées par la demande du marché, les progrès technologiques et les réglementations environnementales (chapitre 15, 15.2), et les goulots d'étranglement en termes de coûts et de performances doivent être résolus.

• État du marché (2024) :

- o **Taille**: Le marché des matériaux à base de borure de tungstène à haute température représente environ 50 millions de dollars américains, l'aérospatiale représentant environ 70 % (chapitre 14.1).
- Production: ~500 tonnes /an (Chapitre 5.6), principalement en Asie (Chine, Corée du Sud).
- Prix: ~200 USD/kg (morceau), ~350 USD/kg (enrobage, chapitre 14, 14.2).

• Conducteurs:

- o **Demande**: Croissance de la demande aéronautique (turbofans) ~8%/an, production ~800 tonnes en 2030.
- o **Technologie**: Nano WB 2 (chapitre 5.5) et l'optimisation de l'IA (chapitre 17.5) améliorent les performances d'environ 15 %.
- o **Réglementation**: Le CBAM de l'UE (2026, chapitre 15.2) stimule la demande de matériaux verts.

• Tendances futures (2025–2030):

- Réduction des coûts: La production à grande échelle (chapitre 5.6) réduit le coût à environ 150 USD/kg, avec une taille de marché d'environ 80 millions USD.
- o **Nouvelle application**: Barrières thermiques pour réacteurs nucléaires (résistance en température > 2000°C), part de marché ~10%.
- Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,3 tonne de CO₂ / tonne).

• défi :

- $\circ~$ Les alternatives (telles que ZrB2 , dureté ~35 GPa , chapitre 4.4) coûtent environ 100 \$/kg, menaçant le marché bas de gamme.
- Investissement d'environ 5 millions de dollars dans les équipements de test à haute température (> 2000 °C).

Tableau 8.6 Perspectives et défis des matériaux à haute température en borure de tungstène

projet	Situation actuelle en 2024	Objectifs 2030	Conducteurs	défi	Chapitres connexes
Taille du marché (milliards de dollars américains)	0,5	0,8	Demande en aviation	Alternatives	14.1
Coût (USD/kg)	200–350	150	Échelle	Coûts des tests	14.2, 5.6
Émissions de carbone (tonnes de CO ₂ / tonne)	0,4	0,3	Technologie verte	investir	16.3, 15.2

en.com

www.chinatungsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatungsten.com

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications							
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)		
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001		
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002		
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05		
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,		

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 9 Application du borure de tungstène dans les appareils électroniques

Français Le borure de tungstène (WB, WB₂, W₂B) présente un potentiel important dans le domaine des dispositifs électroniques en raison de sa conductivité électrique élevée (~ 10^4 S/cm, chapitre 6, 6.5), de sa stabilité thermique (> 2000 °C, chapitre 2, 2.3), de sa stabilité chimique (taux de corrosion < 0.005 mm/an, chapitre 7, 7.5) et de sa contrôlabilité à l'échelle nanométrique (taille des particules 10-50 nm, chapitre 5, 5.5). Il est largement utilisé dans les films conducteurs (résistivité ~ 10^{-5} Ω ·cm), les électrodes (durée de vie prolongée d'environ 30 %), les capteurs (sensibilité < 1 ppm, chapitre 10, 10.3) et les dispositifs semi-conducteurs (bande interdite ~ 1.5 eV, chapitre 3, 3.4). Ce chapitre examine en détail l'application, la technologie de préparation, l'état du marché et la tendance de développement du borure de tungstène dans les films conducteurs, les électrodes, les capteurs et les dispositifs semi-conducteurs, et fournit un support technique pour l'industrialisation électronique (chapitre 14, 14.3) et l'innovation technologique (chapitre 17, 17.5) du borure de tungstène.

9.1 Application du borure de tungstène dans les films conducteurs

Les films conducteurs en borure de tungstène conviennent à l'électronique flexible, aux écrans et aux appareils électroniques marins en raison de leur conductivité élevée et de leur résistance à la corrosion (chapitre 7.5).

- Scénarios d'application : COMM
 - Electronique flexible: film mince WB₂ (épaisseur ~100 nm, chapitre 5.2) sur substrat PET, conductivité ~0,8×10⁴ S/cm, variation de résistance <1% lorsque le rayon de courbure <5 mm.

- Film conducteur transparent : WB2 dopé N (<2 at%, Chapitre 3.4) sur substrat de verre, transmittance ~85% (550 nm), résistivité ~ $10^{-4} \Omega$ · cm, remplaçant ITO $(\sim 10^{-4} \Omega \cdot \text{cm})$.
- Electronique marine : Revêtement WB₂ (épaisseur ~1 μ m) sur électrode de capteur, solution NaCl (3,5 % en poids, 60 °C) densité de courant de corrosion $<10^{-7} \text{ A/cm}^2$.

Exigences techniques:

- Conductivité: >0,5×10 ⁴ S/cm (Chapitre 6, 6.5).
- Rugosité de surface : Ra<0,3 nm (Chapitre 6.3), garantissant les performances de
- Adhésion: Énergie de liaison ~1,5 eV/Å² (Chapitre 3.3), anti-pelage (>40 N).

Exemples:

En 2024, les films WB2 seront utilisés dans les électrodes OLED flexibles, avec une conductivité augmentée d'environ 20 % (~ 104S/cm) et un coût réduit d'environ 15 % ($\sim 50 \text{ USD/m}^2$).

défi:

- La contrainte résiduelle dans le film (~0,8 GPa) peut provoquer des fissures et nécessite un recuit (500°C, chapitre 5.2).
- La transmittance des films conducteurs transparents doit être davantage optimisée (> 90 %).

Tableau 9.1 Paramètres d'application du film conducteur en borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Conductivité (S/cm)	0,8 ×	Haute conductivité	Contraintes résiduelles	6,5, 5,2
lumineuse (%)	10 ⁴ 85	Remplacement de l'ITO	Optimisation de la transmission lumineuse	3.4
Courant de corrosion (A/cm²)	<10 -7	Résistance à la corrosion	coût	7,5, 14,2
9.2 Application du bor	ure de tu	ngstène dans les mat	ériaux d'électrodes	www.chinatur

9.2 Application du borure de tungstène dans les matériaux d'électrodes

Les matériaux d'électrode en borure de tungstène conviennent aux batteries au lithium, aux piles à combustible et aux électrolyseurs en raison de leur conductivité élevée et de leur résistance à la corrosion.

Scénarios d'application : COM

o Batteries au lithium: nanoparticules WB₂ (20–50 nm, chapitre 5.5) comme additifs d'électrode négative, conductivité ~104S / cm, durée de vie du cycle ~1000 www.chinatungsten.c fois (décroissance de capacité <10%).

- o **Pile à combustible** : revêtement WB (épaisseur $\sim 2~\mu$ m) sur électrode à membrane échangeuse de protons (PEM), résistance aux acides (H₂SO₄ , 1 M) taux de corrosion < 0.01~mm/an, augmentation de l'efficacité $\sim 10\%$.
- Électrolyseur: En électrolyse alcaline (KOH, 30 % en poids, 80 °C), l'électrode WB2 présente une surtension d'évolution d'hydrogène d'environ 100 mV et une prolongation de la durée de vie d'environ 30 % (environ 5 000 h).

• Exigences techniques :

- o Conductivité: >10 4 S/cm (Chapitre 6.5).
- o Surface spécifique : >50 m²/g (Chapitre 5.5), améliorant l'activité électrochimique.
- Stabilité: Taux de corrosion < 0,01 mm/an (Chapitre 7.5).

• Exemples :

En 2024, les électrodes d'électrolyseur revêtues de WB₂, densité de courant ~500 mA/cm², efficacité énergétique augmentée d'environ 12 %.

• défi :

- L'agglomération de nanoparticules (chapitre 5.3) réduit l'activité et nécessite une modification de surface (PVP, < 0,1 % en poids).
- Le coût de l'électrode (environ 200 \$/kg) est plus élevé que celui des matériaux à base de carbone (environ 50 \$/kg).

Tableau 9.2 Paramètres d'application de l'électrode en borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Durée de vie du cycle	1000	Grande	Réunion	5,5, 6,5
(fois)		stabilité		
Surtension (mV)	100	Haute	coût	7,5
hinatung		efficacité		
Surface spécifique (m²/g)	>50	Haute activité	Préparation	5.3
		CTOMS	complexe	

9.3 Application du borure de tungstène dans les capteurs

Les nanomatériaux à base de borure de tungstène conviennent aux capteurs de gaz, de pression et de température en raison de leur surface spécifique élevée et de leur activité électrochimique.

Scénarios d'application :

- O Capteur de gaz : les nanoparticules WB₂ (10–30 nm, chapitre 5.5) détectent le NO₂ (< 1 ppm), avec un temps de réponse d'environ 5 s et une sensibilité d'environ 50 % (10 ppm).
- o Capteur de pression : couche mince WB₂ (épaisseur ~200 nm) dans les dispositifs MEMS, facteur de jauge ~20, température de fonctionnement <500°C.
- o Capteur de température : bloc WB (résistivité $\sim 10^{-5} \,\Omega$ · cm, Chapitre 6 6.5) Dans un environnement à haute température (1000°C), le coefficient de température est d'environ 0,01%/K.

• Exigences techniques :

o **Sensibilité**: Détection de gaz < 1 ppm (Chapitre 6.1).

o Temps de réponse : <10 s.

o Résistance à la température : >500°C (Chapitre 2.3).

Exemples :

En 2024, les capteurs de gaz WB₂ seront utilisés pour la surveillance des gaz résiduaires industriels, avec une limite de détection de NO₂ d'environ 0,5 ppm et une stabilité > 6 mois.

• défi :

- La sélectivité des nanoparticules doit être améliorée (interférence avec le CO ~10%).
- o L'emballage des capteurs haute température est coûteux (environ 100 \$/unité).

Tableau 9.3 Paramètres d'application du capteur au borure de tungstène

paramètre	valeur	avantage O	défi	Chapitres connexes
Limite de détection (ppm)	<1	Haute sensibilité	Sélectivité	6.1, 5.5
Temps de réponse	5	rapide	Coût de	10.3
MM			l'emballage	eten.com
Température de	500-	Résistance aux	ingérence	2.3
fonctionnement (°C)	1000	hautes températures		

9.4 Potentiel du borure de tungstène dans les dispositifs semi-conducteurs

Le borure de tungstène présente un potentiel dans les dispositifs semi-conducteurs (tels que les transistors et les dispositifs photovoltaïques) en raison de sa bande interdite réglable (~1,5 eV, chapitre 3.4) et de sa conductivité élevée.

• Scénarios d'application :

- o **Transistor**: film WB₂ (épaisseur ~50 nm) comme électrode de grille, fonction de travail ~4,8 eV, réduisant la résistance de contact d'environ 20 % (~10 $^{-7}$ Ω · cm²).
- o **Dispositifs photovoltaïques** : WB₂ dopé N (bande interdite ~1,4 eV) comme électrode arrière, l'efficacité de conversion photoélectrique est d'environ 15 %, ce qui est meilleur que Mo (~12 %).
- **Diode** : hétérojonction WB_2 /Si, courant de fuite <10 $^{-8}$ A/cm² , adaptée à l'électronique haute température (>300°C).

• Exigences techniques :

o **Bande interdite**: 1,4–1,6 eV (chapitre 3.4).

o Conductivité: >10 4 S/cm (Chapitre 6.5).

• **Résistance d'interface** : $<10^{-7}$ Ω · cm².

Exemples:

En 2024, les électrodes de grille WB₂ seront utilisées dans les transistors à nœud de 5 nm et la vitesse de commutation augmentera d'environ 10 %.
 :

• défi :

- La régulation de la bande interdite nécessite un dopage précis (N, C < 5 at%), avec un coût d'environ 300 \$/kg.
- Les défauts d'interface avec le substrat Si (~10¹²/cm²) doivent être optimisés (chapitre 5.2).

Tableau 9.4 Paramètres d'application du semi-conducteur au borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Bande interdite (eV)	1,4-	Réglable	Le coût du dopage	3.4, 5.5
	1,6			olt olt
Résistance de contact	<10 -7	Faible résistance	Défauts	6,5
(Ω·cm²)			d'interface	
efficacité(%)	15	haute	Processus	14.3
	6	performance	complexe	

9.5 Technologie de préparation des dispositifs électroniques au borure de tungstène

La préparation des dispositifs électroniques en borure de tungstène adopte principalement le dépôt chimique en phase vapeur (CVD, chapitre 5.2), la pulvérisation magnétron (PVD) et la méthode www.chinatung sol-gel (chapitre 5.5).

Mode de préparation :

- o MCV:
 - Procédé: WF₆ + B₂H₆ déposent des films minces de WB₂ (chapitre 5.2) à 400–600° C, avec une vitesse d'environ 1,2 μm/h.
 - **Avantages**: Homogénéité >95%, conductivité ~10 ⁴ S/cm.
 - **Optimisation**: Taux de CVD basse pression (< 5 Pa) augmenté d'environ 40 % (environ 1,7 μ m/h).

Pulvérisation magnétron:

- Procédé: La cible WB2 (pureté > 99,9 %) a été pulvérisée dans une atmosphère d'Ar (3 Pa), avec un taux de dépôt d'environ 0,5 μm/h.
- Avantages: Basse température (<300°C), adapté aux substrats Si.
- Optimisation : HiPIMS augmente la densité d'environ 20 % et réduit la résistivité d'environ 15 % (environ 10 ⁻⁵ Ω· cm).

Méthode Sol-Gel:

- Procédé : Na₂WO₄ +H₃BO₃ pour former un gel, qui est calciné à 500°C pour obtenir des nanoparticules de WB₂ (20–50 nm, chapitre 5, 5.5).
- Avantages: Faible coût (~100\$/kg), adapté aux capteurs.
- Optimisation : Le microréacteur contrôle la distribution granulométrique <10 nm.

Techniques d'optimisation:

Dopage: Le dopage N (<2 at%) réduit la bande interdite d'environ 0,1 eV (chapitre

- Contrôle de l'IA: CTIA GROUP LTD utilisera l'IA pour optimiser le flux de gaz
 CVD en 2024 (chapitre 17, 17.5), et l'efficacité du dépôt augmentera d'environ
- o **Structure multicouche** : WB₂ / TiN (période ~5 nm) réduit la résistance de l'interface d'environ 30 %.

• défi :

- Les sous-produits CVD (HF) doivent être traités (chapitre 16.3), ce qui coûte environ 50 USD/tonne.
- L'agglomération de nanoparticules nécessite une dispersion ultrasonore (40 kHz, chapitre 5, 5.3).

Tableau 9.5 Comparaison des technologies de préparation des dispositifs électroniques au borure de tungstène

méthode	Taux de dépôt (μ m/h)	Conductivité (S/cm)	Coût (USD/kg)	avantage	défi	Chapitres connexes
maladies cardiovasculaires	1,2–1,7	10 4	300	Uniformité	Sous-produits	5.2, 16.3
PVD	0,5	0,8 × 10 ⁴	350	Basse température	Cibler les déchets	5.6
Sol-Gel	-	0,5× 10 ⁴	100	faible coût	Réunion	5,5, 17,5

9.6 Tendances du marché et du développement des dispositifs électroniques au borure de tungstène

Le marché des dispositifs électroniques en borure de tungstène est stimulé par la demande de 5G, d'Internet des objets et de nouvelles énergies, et doit résoudre les goulots d'étranglement en termes de coûts et d'échelle.

• État du marché (2024) :

- Taille: Le marché mondial des appareils électroniques au borure de tungstène représente environ 30 millions de dollars américains, dont environ 65 % en Asie (Chine, Japon, chapitre 14.1).
- o **Applications** : Capteurs \sim 40%, électrodes de batterie \sim 30%, semi-conducteurs \sim 20%.
- **Prix**: ~ 300 \$/kg (film), ~ 100 \$/kg (nanoparticules, chapitre 14, 14.2).

• Conducteurs :

- o **Demande**: croissance des équipements 5G et IoT ~12%/an, production ~300 tonnes en 2030 (Chapitre 5, 5.6).
- **Technologie**: Nano WB 2 (chapitre 5.5) et l'optimisation de l'IA (chapitre 17.5) améliorent les performances d'environ 20 %.
- o **Réglementation**: La directive RoHS de l'UE (chapitre 15.2) promeut les matériaux électroniques verts.

• Tendances futures (2025–2030):

- **Réduction des coûts**: La production à grande échelle (chapitre 5.6) réduit le coût à environ 200 USD/kg, avec une taille de marché d'environ 50 millions USD.
- Nouvelles applications : antennes 6G (fréquence > 100 GHz) et dispositifs quantiques, représentant ~15%.
- Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).

• défi :

- Les nanotubes de carbone (conductivité ~10 5 S/cm) coûtent environ 50 \$/kg, menaçant le marché bas de gamme.
- Les applications des semi-conducteurs nécessitent des avancées dans l'ingénierie des interfaces (défauts < 10¹¹/cm²).

Tableau 9.6 Marché et tendances des dispositifs électroniques au borure de tungstène

projet	Situation	Objectifs C	Conducteurs	défi	Chapitres
	actuelle en 2024	2030			connexes
Taille du marché	0,3	0,5	Demande 5G	Alternatives	14.1
(milliards de					
dollars américains)				inatul	183
Coût (USD/kg)	100–300	200	Échelle	Ingénierie des	14.2, 5.6
			14	interfaces	
Émissions de	0,3	0,2	Technologie	investir	16.3, 15.2
carbone (tonnes de			verte		
CO ₂ / tonne)					

Chapitre 10 Catalyse et applications chimiques du borure de tungstène

Le borure de tungstène (tel que WB, WB2, W2B) présente un potentiel important dans les applications catalytiques et chimiques en raison de sa surface spécifique élevée (> 50 m²/g, chapitre 5 5.5), de son excellente activité électrochimique (surtension de dégagement d'hydrogène ~ 100 mV, chapitre 9 9.2), de sa stabilité chimique (taux de corrosion < 0,005 mm/an, chapitre 7 7.5) et de sa structure électronique ajustable (bande interdite ~ 1,5 eV, chapitre 3 3.4). Il est largement utilisé en électrocatalyse (efficacité de décomposition de l'eau ~ 85 %), en photocatalyse (efficacité de dégradation ~ 90 %) et en catalyse de réaction chimique (taux de conversion > 95 %). Ce chapitre traite en détail de l'application du borure de tungstène dans l'électrocatalyse, la photocatalyse, la catalyse de réaction chimique, la chimie de surface et les sites actifs, la technologie de préparation et d'optimisation, ainsi que les perspectives et les défis industriels, afin de fournir un soutien technique à l'industrialisation catalytique (chapitre 14 14.3) et à la chimie verte (chapitre 16 16.4) du borure de tungstène.

10.1 Application du borure de tungstène en électrocatalyse

Le borure de tungstène convient à la séparation électrocatalytique de l'eau, à la réduction du CO₂ et aux piles à combustible en raison de sa conductivité électrique élevée (~ 10⁴S / cm, chapitre 6 6.5) et de sa faible surtension.

• Scénarios d'application :

- Réaction d'évolution de l'hydrogène (HER): les nanoparticules WB₂ (20–50 nm, chapitre 5.5) ont une surtension d'environ 100 mV (10 mA/cm²) en milieu acide (0,5 MH₂SO₄), ce qui est meilleur que Ni (environ 200 mV).
- Réaction d'évolution de l'oxygène (OER): le WB₂ dopé N (<2 at%, chapitre 3.4)
 en milieu alcalin (1 M KOH) a une surtension d'environ 300 mV et une stabilité de >1000 heures.

o **Réduction du CO₂**: les films minces WB₂ (épaisseur ~200 nm, chapitre 5.2) génèrent sélectivement du CO (efficacité Faraday ~90%, -0,8 V vs RHE).

• Exigences techniques :

- o **Surpotentiel**: <150 mV (HER), <350 mV (OER).
- o Surface spécifique : >50 m²/g (Chapitre 5.5).
- o **Stabilité**: Durée de vie du cycle > 1000 heures (Chapitre 9.2).

• Exemples :

o En 2024, les électrodes électrocatalytiques WB₂ sont utilisées dans les électrolyseurs alcalins avec une densité de courant d'environ 500 mA/cm² et une augmentation de l'efficacité énergétique d'environ 10 %.

• défi :

- L'agglomération de nanoparticules (chapitre 5.3) réduit les sites actifs et nécessite une modification de surface (PVP, < 0,1 % en poids).
- o La stabilité doit être améliorée à des densités de courant élevées (> 1 A/cm²).

Tableau 10.1 Paramètres d'application de l'électrocatalyse au borure de tungstène

paramètre	valeur	avantage	défi	Chapitres connexes
Surtension HER (mV)	100	Efficace	Réunion	5,5, 9,2
Stabilité des REL (heures)	>1000	Longue vie	Courant élevé	3.4
Efficacité CO ₂ (%)	90	Haute sélectivité	coût	5.2, 14.2

10.2 Application du borure de tungstène en photocatalyse

Les nanomatériaux à base de borure de tungstène conviennent à la dégradation photocatalytique et à la production d'hydrogène en raison de leur bande interdite réglable (~1,4–1,6 eV, chapitre 3.4) et de leur grande stabilité chimique.

• Scénarios d'application :

- Dégradation de la matière organique : les nanoparticules WB₂ (10-30 nm, chapitre 5.5) ont dégradé le bleu de méthylène (10 mg/L) sous lumière visible (> 420 nm) avec une efficacité d'environ 90 % (2 heures).
- Production photocatalytique d'hydrogène : Le composite WB₂ / TiO₂ (1:10) produit de l'hydrogène à un taux d'environ 500 μmol /(g · h) sous lumière ultraviolette (365 nm), ce qui est meilleur que celui du TiO₂ pur (~200 μmol /(g · h)).
- o **Photoréduction du CO₂**: le WB₂ dopé N (<2 at%) produit du CH₄ avec une sélectivité **d'** environ 80 % (-0,5 V vs NHE).

• Exigences techniques :

- o **Bande interdite**: 1,4–1,6 eV (chapitre 3.4).
- o **Absorption lumineuse**: >80% (400–700 nm).
- o **Stabilité**: >500 heures (Chapitre 7.5).
- Exemples :

En 2024, les photocatalyseurs WB₂ / TiO₂ seront utilisés pour le traitement des eaux usées, avec un taux de dégradation d'environ 95 % et une stabilité du cycle > 10 fois.

défi :

- Le taux de recombinaison des porteurs photogénérés est élevé (~30%), nécessitant une optimisation de l'hétérojonction.
- o La réponse à la lumière visible doit être encore améliorée (> 90 %).

Tableau 10.2 Paramètres d'application photocatalytique du borure de tungstène

paramètre	valeur	avantage	défi	Chapitres connexes
Efficacité de dégradation (%)	90	Efficace	Recombinaison de porteurs	5,5, 7,5
Taux de production d'hydrogène (μ mol /(g ·h))	500	Haute activité	Réponse à la lumière visible	3.4
Stabilité (fois)	>10	Recyclable	coût	14.2

10.3 Application du borure de tungstène dans la catalyse des réactions chimiques

Le borure de tungstène présente une activité catalytique élevée dans les réactions d'hydrogénation, de désulfuration et d'oxydation et convient aux produits pétrochimiques et aux produits chimiques fins.

• Scénarios d'application :

- o **Réaction d'hydrogénation**: les nanoparticules WB₂ (<50 nm, chapitre 5.5) catalysent l'hydrogénation du benzène en cyclohexane avec un taux de conversion d'environ 95 % (150 °C, 2 MPa).
- Hydrodésulfuration (HDS): les films minces WB₂ (épaisseur ~500 nm) réduisent la teneur en soufre de 500 ppm à <10 ppm dans la désulfuration du diesel avec une efficacité d'environ 98 %.
- o **Réaction d'oxydation**: le catalyseur WB₂ a un taux de conversion d'environ 90 % en oxydation du CO (200 °C), ce qui est meilleur que NiO (environ 80 %).

• Exigences techniques :

- Taux de conversion :>95%.
- o **Sélectivité** :>90%.
- Résistance à la température : >300°C (Chapitre 2.3).

• Exemples :

 En 2024, le catalyseur WB₂ sera utilisé pour l'hydrogénation pétrochimique, avec un rendement augmenté d'environ 10 % et une durée de vie du catalyseur d'environ 2 000 heures.

• défi : de Chi

- Les sites actifs sont inactivés lors de réactions à haute pression (> 5 MPa).
- o Le coût du catalyseur (~200 USD/kg) est plus élevé que celui du Ni (~50 USD/kg).

Tableau 10.3 Paramètres d'application de la catalyse chimique au borure de tungstène

paramètre	valeur	avantage	défi	Chapitres connexes
Taux de conversion (%)	95	Efficace	Inactivation	5,5, 2,3
Sélectivité (%)	90	Haute sélection	coût	14.2
Durée de vie (heures)	2000	Longue vie	haute pression	9.3

10.4 Chimie de surface et sites actifs des catalyseurs au borure de tungstène

Les performances catalytiques du borure de tungstène dépendent de la chimie de surface et des sites actifs, qui doivent être optimisés par caractérisation et analyse théorique.

• Chimie de surface :

- o **Liaison WB**: W 4f (~31 eV) et B 1s (~188 eV, chapitre 6, 6.1) forment une liaison mixte métal-covalente (chapitre 3, 3.2), améliorant le transfert d'électrons.
- o **États de surface** : le dopage N (<2 at%) introduit des liaisons BN (~190 eV), réduisant la fonction de travail d'environ 0,2 eV (chapitre 3, 3.4).
- Énergie d'adsorption : énergie d'adsorption H* ~0,5 eV (HER), meilleure que Pt (~0,4 eV), calcul DFT (chapitre 3, 3.3).

• Site actif:

- Site W: catalyse l'HER et l'hydrogénation, et fournit des électrons à H* (taux d'adsorption ~90%).
- Site B: favorise l'adsorption d'O* (OER), avec une énergie d'adsorption d'environ 1,0 eV.
- O **Joint de grain**: Nano-WB₂ (<20 nm, chapitre 6.2) Densité du site de joint de grain $\sim 10^{13}$ /cm², augmentation de l'activité $\sim 30\%$.

• Techniques de caractérisation :

- XPS: Analyse des états de surface (Chapitre 6.1), le dopage N représente environ 1.5 %.
- o MET: Observer les sites de joints de grains (résolution ~0,1 nm, Chapitre 6, 6.2).
- Raman: Vibration WB confirmée (~800 cm ⁻¹, Chapitre 6, 6.2).

• optimisation:

- **Dopage**: Le Ni (<1 at%) améliore l'activité HER avec une baisse d'environ 20 % de la surtension (de 100 mV à environ 80 mV).
- o **Nano-conception**: WB₂ poreux (taille des pores ~5 nm) avec une augmentation de surface d'environ 50 % (~100 m²/m²/g).

• défi :

- Les sites actifs sont désactivés à haute température (> 500 °C) et nécessitent un dopage thermiquement stable.
- o Les calculs DFT nécessitent des modèles de haute précision (erreur < 0,1 eV).

Tableau 10.4 Chimie de surface et caractéristiques du site actif

paramètre	valeur	avantage	défi destend	Chapitres
			hinatuus	connexes

Énergie d'adsorption	0,5 (H*)	Haute activité	Inactivation par la	3.3, 6.1
(eV)			chaleur	
Surface spécifique	100	Point culminant	Précision du calcul	5,5, 6,2
(m²/g)	5			
Effet dopant	Surpotentiel -	Augmentation de	coût	3.4
No.	20%	l'efficacité	ngsten.	

10.5 Préparation et optimisation du catalyseur au borure de tungstène

La préparation de catalyseurs au borure de tungstène utilise principalement la méthode sol-gel (chapitre 5.5), la synthèse assistée par plasma (chapitre 5.3) et le dépôt chimique en phase vapeur (CVD, chapitre 5.2).

• Mode de préparation :

- Méthode Sol-Gel :
 - **Procédé**: Na₂WO₄ +H₃BO₃ pour former un gel, qui est calciné à 600°C pour obtenir des nanoparticules de WB₂ (10–30 nm, chapitre 5, 5.5).
 - Avantages : Faible coût (~100\$/kg), surface >60 m²/g.
 - **Optimisation**: Le microréacteur contrôle la distribution granulométrique < 5 nm, l'activité augmente d'environ 20 %.

Synthèse assistée par plasma :

- **Procédé**: W+B est vaporisé dans du plasma (>5000°C) pour produire de la nanopoudre WB₂ (<50 nm, chapitre 5.3).
- Avantages : haute pureté (>99,9%, Chapitre 6.1), haute activité.
- **Optimisation**: Rendement du plasma pulsé (50 kHz) augmenté d'environ 88 %, coût d'environ 200 \$/kg.

o MCV:

- **Procédé**: WF₆ + B₂H₆ déposent un film mince de WB₂ (chapitre 5.2) à 400–600 °C avec une épaisseur d'environ 200 nm.
- Avantages : Homogénéité >95%, adapté aux électrodes.
- **Optimisation**: CTIA GROUP LTD utilisera l'IA pour optimiser le flux d'air en 2024 (chapitre 17, 17.5), augmentant l'efficacité d'environ 15 %.

• Techniques d'optimisation :

- **Dopage**: Le dopage N et Ni (<2 at%) augmente l'activité HER d'environ 30 % (Chapitre 3, 3.4).
- Structure poreuse: la méthode du modèle (SiO₂, taille des pores ~5 nm) augmente la surface spécifique d'environ 50 % (~100 m²/g).
- Matériau composite: WB₂ / TiO₂ (1:10) efficacité photocatalytique augmentée d'environ 40 %.

• défi :

- Le coût du traitement des sous-produits CVD (HF) est d'environ 50 USD/tonne (chapitre 16.3).
- L'agglomération de nanoparticules nécessite une dispersion ultrasonore (40 kHz, chapitre 5, 5.3).

Tableau 10.5 Comparaison des technologies de préparation des catalyseurs au borure de tungstène

méthode www.chimatun	Surface spécifique (m²/g)	Coût (USD/kg)	avantage	défi	Chapitres connexes
Sol-Gel	>60	100	faible coût	Réunion	5.5, 6.1
plasma	>50	200	Haute pureté	Consommation d'énergie élevée	5,3, 17,5
maladies cardiovasculaires	-	300	Uniformité	Sous-produits	5.2, 16.3

10.6 Perspectives industrielles et défis de l'application catalytique du borure de tungstène

Le marché des applications catalytiques au borure de tungstène est stimulé par de nouveaux besoins en matière d'énergie et de protection de l'environnement et doit résoudre les problèmes de coût et d'échelle.

État du marché (2024) :

- o **Taille**: Marché mondial des catalyseurs au borure de tungstène ∼ 20 millions de dollars US, l'Asie représentant ∼ 60 % (Chine, Japon, chapitre 14.1).
- Application: L'électrocatalyse représente environ 50 %, la photocatalyse environ 30 % et la catalyse chimique environ 20 %.
- Prix: ~100\$/kg (nanoparticules), ~300\$/kg (films minces, chapitre 14, 14.2).

• Conducteurs:

- o **Demande**: Les objectifs d'énergie hydrogène et de neutralité carbone vont faire grimper la demande d'électrocatalyse d'environ 15 % par an, avec une production atteignant environ 200 tonnes en 2030 (chapitre 5, 5.6).
- o **Technologie**: Nano WB 2 (chapitre 5.5) et optimisation de l'IA (chapitre 17.5) augmentent l'activité d'environ 20 %.
- o Règlement: EU REACH (Chapitre 15.2) promeut les catalyseurs verts.

• Tendances futures (2025–2030):

- Réduction des coûts : la production à grande échelle (chapitre 5.6) réduit le coût à environ 80 USD/kg et la taille du marché est d'environ 40 millions USD.
- o **Nouvelle application** : Synthèse électrocatalytique d'ammoniac (NH₃ , efficacité >90%), représentant ~10%.
- Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).

• défi :

- O Les catalyseurs à base de nickel (coût d'environ 30 \$/kg) menacent le marché bas de gamme.
- La mise à l'échelle industrielle nécessite une percée dans la désactivation du catalyseur (> 5 000 heures).

Tableau 10.6 Marché et tendances des catalyseurs au borure de tungstène

projet	Situation actuelle en	Objectifs 2030	Conducteurs	défi	Chapitres connexes
TWW.CILL	2024				
Taille du marché	0,2	0,4	Demande en	Alternatives	14.1
(milliards de dollars			hydrogène		
américains)		WWW.	D1E		
Coût (USD/kg)	100–300	80	Échelle	Inactivation	14.2, 5.6
Émissions de carbone	0,3	0,2	Technologie	investir	16.3, 15.2
(tonnes de CO ₂ / tonne)			verte		

en.com

www.chinatungsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

CTIA GROUP LTD **Tungsten Boride Product Introduction**

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

. Tungsten Boride	Product Spec	ifications				
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)	
Nano-grade	0.01-0.05	≥99.9	3.5–4.0	10.2–10.8	Fe≤0.002, Si≤0.001	
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002	
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05	

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 11 Applications biomédicales du borure de tungstène

Français Le borure de tungstène (tel que WB, WB₂, W₂B) a montré un potentiel unique dans le domaine biomédical en raison de sa dureté élevée (~40 GPa, chapitre 2 2.5), de sa stabilité chimique (taux de corrosion <0,005 mm/an, chapitre 7 7.5), de sa contrôlabilité à l'échelle nanométrique (taille des particules 10–50 nm, chapitre 5 5.5) et de sa biocompatibilité potentielle. Il convient aux revêtements médicaux (résistance à l'usure des implants améliorée d'environ 30 %), à l'administration de médicaments (efficacité de chargement de médicaments > 80 %) et aux biocapteurs (limite de détection <1 nM). Bien que la recherche sur le borure de tungstène en biomédecine en soit encore à ses débuts, sa conductivité élevée (~10⁴S / cm, chapitre 6 6.5) et son activité chimique de surface (chapitre 10 10.4) constituent la base de son application. Ce chapitre traite en détail des applications, de la biocompatibilité et de la sécurité, de la technologie de préparation, ainsi que des perspectives et des défis du borure de tungstène dans les revêtements biomédicaux, l'administration de médicaments et les biocapteurs, fournissant un soutien technique pour l'industrialisation biomédicale (chapitre 14, 14.3) et l'évaluation de la sécurité (chapitre 15, 15.3) du borure de tungstène.

11.1 Application du borure de tungstène dans les revêtements biomédicaux

Les revêtements en borure de tungstène conviennent aux implants orthopédiques et aux outils dentaires en raison de leur dureté élevée, de leur faible coefficient de frottement (~ 0,25, chapitre 6 6.4) et de leur résistance à la corrosion.

• Scénarios d'application :

- o Implants orthopédiques : revêtement WB₂ (épaisseur ~2–5 μ m , chapitre 5.2) sur articulations de hanche en alliage de titane, dureté ~42 GPa , taux d'usure <10⁻⁶ mm³ / (N · m) et prolongation de la durée de vie d'environ 30 %.
- Outils dentaires: Revêtement WB (épaisseur ~1 μ m) sur la surface du foret, coefficient de frottement ~0,25, résistance à l'usure améliorée d'environ 25 % et dommages thermiques réduits (<50°C).
- Stents vasculaires: les films WB₂ (épaisseur ~100 nm) réduisent le taux de thrombose d'environ 20 % et sont résistants à la corrosion (NaCl, 3,5 % en poids , 37 °C) < 0,005 mm/an.

• Exigences techniques :

- o **Dureté** : >38 GPa (Chapitre 6, 6.4).
- o **Rugosité de surface** : Ra<0,3 nm (Chapitre 6.3), réduisant la cytotoxicité.
- o **Adhésion**: Énergie de liaison $\sim 1.5 \text{ eV/Å}^2$ (Chapitre 3.3), anti-pelage (>40 N).

• Exemples :

o En 2024, l'usure des implants de hanche revêtus de WB₂ en simulation in vitro (PBS, 37°C) a été réduite d'environ 15 % (< 0,01 mm/an).

• défi :

- o Les contraintes résiduelles dans le revêtement (~0,8 GPa) peuvent entraîner des microfissures et nécessiter un recuit (400°C, chapitre 5.2).
- La stabilité in vivo à long terme nécessite une vérification supplémentaire (> 5 ans).

Tableau 11.1 Paramètres d'application des revêtements biomédicaux en borure de tungstène

paramètre CONTRACTOR	valeur	avantage	défi	Chapitres
hinature				connexes
Dureté (GPa)	42	Haute résistance à	Contraintes	6.4, 5.2
		l'usure	résiduelles	
Taux d'usure (mm ³	<10 -6	Longue vie	Stabilité à long terme	7,5
/(N ·m))				
Rugosité (nm)	<0,3	Faible toxicité	Processus complexe	6.3

11.2 Application des nanoparticules de borure de tungstène à l'administration de médicaments sont adaptés à l'administration ciblée de médicaments et à la thérapie photothermique en raison de leur surface spécifique élevée (> 50 m²/g, chapitre 5.5) et de leur surface fonctionnalisable.

• Scénarios d'application :

o **Administration ciblée de médicaments**: les nanoparticules WB₂ (10–30 nm, chapitre 5.5) ont été modifiées en surface avec du PEG (< 0,1 % en poids), avec une efficacité de chargement du médicament d'environ 80 % (doxorubicine) et un taux de libération d'environ 60 % (pH 5,5, 24 h).

- Thérapie photothermique : les nanoparticules WB₂ ont une efficacité de conversion photothermique d'environ 40 % sous lumière proche infrarouge (808 nm, 1 W/cm²) et un taux de destruction des cellules tumorales de > 90 % (de 37°C à 50°C).
- Guidage d'imagerie : les nanoparticules WB₂ sont utilisées comme agents de contraste CT avec une unité Hounsfield d'environ 200 HU, ce qui est supérieur aux agents de contraste iodés (environ 150 HU).

• Exigences techniques :

- Taille des particules : 10–50 nm (chapitre 5.5).
- o Efficacité de chargement du médicament :> 80 %.
- o **Biocompatibilité** : Viabilité cellulaire > 90% (ISO 10993-5).

• Exemples :

o En 2024, des nanoparticules WB₂ modifiées par PEG ont été utilisées pour le traitement ciblé du cancer du poumon, avec une précision de libération du médicament augmentée d'environ 25 % (in vitro).

• défi :

- La voie métabolique des nanoparticules in vivo n'est pas claire et des études de toxicité à long terme (> 6 mois) sont nécessaires.
- La thérapie photothermique nécessite une absorption lumineuse optimisée (> 50 %).

Tableau 11.2 Paramètres d'administration de médicaments par des nanoparticules de borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Efficacité de chargement du	80	Capacité de	Voie métabolique	5.5
médicament (%)		chargement élevée		
Efficacité photothermique (%)	40	Un meurtre très	Absorption de la	10.2
		efficace	lumière	
Taille des particules (nm)	10-30	Ciblage	Études de toxicité	6.3

11.3 Application du borure de tungstène dans les biocapteurs

Les nanomatériaux à base de borure de tungstène conviennent à la détection de biomolécules en raison de leur conductivité élevée (~10 4 S/cm, chapitre 6 6.5) et de leur activité de surface.

• Scénarios d'application :

- O Capteur de glucose: nanoparticules WB₂ (20 nm, chapitre 5.5) électrode modifiée, limite de détection ~0,1 μM, temps de réponse ~3 s, plage linéaire 0,1–10 mM.
- Capteur d'ADN: sonde d'acide nucléique fonctionnalisée à film WB₂ (épaisseur ~50 nm, chapitre 5.2), limite de détection ~1 nM, spécificité >95%.
- o Capteur de protéines : le nanoarray WB₂ (taille des pores ~5 nm) détecte le marqueur du cancer (PSA) avec une sensibilité d'environ 0,01 ng/ mL.

Exigences techniques:

- Limite de détection : <1 nM.
- Temps de réponse : <5 s.
- Stabilité: >30 jours (Chapitre 6, 6.5).

Exemples:

En 2024, les capteurs de glucose WB2 sont utilisés pour la surveillance du diabète avec une précision de > 98 % (in vitro).

défi:

- Les interférences de biomolécules (~10%) nécessitent une sélectivité améliorée.
- La miniaturisation des capteurs est coûteuse (environ 50 \$/unité).

Tableau 11.3 Paramètres d'application du biocapteur au borure de tungstène

paramètre	valeur		avantage	défi	Chapitres
					connexes
Limite de	0,1	μΜ	Haute	ingérence	6,5, 5,5
détection	(glucose)		sensibilité		
Temps de réponse	3 china		rapide	coût	9.3
Stabilité (jours)	>30		fiable	Miniaturisation	6.1
11.4 Biocompatibilité et sécurité du borure de tungstène					
11.4 Diocompaniomo			O	WWW	

11.4 Biocompatibilité et sécurité du borure de tungstène

Les applications biomédicales du borure de tungstène doivent garantir la biocompatibilité et la faible toxicité, qui doivent être vérifiées par des tests in vitro et in vivo.

Biocompatibilité:

- Cytotoxicité: Les nanoparticules WB₂ (<50 nm, concentration <100 μg/mL) ont un effet sur la viabilité des cellules L929 >90% (ISO 10993-5, 24 heures).
- Compatibilité sanguine : revêtement WB₂ (épaisseur ~1 µ m) taux d'hémolyse <1%, taux d'adhésion plaquettaire <5% (37°C, PBS).
- Réaction tissulaire : les implants WB2 (os de lapin, 4 semaines) n'ont montré aucune inflammation évidente et un taux de formation osseuse d'environ 80 %.

Sécurité :

- Toxicité : Toxicité aiguë (souris, DL50>2000 mg/kg), aucun dommage organique évident.
- Métabolisme : Les particules WB₂ modifiées par PEG (< 30 nm) sont métabolisées par le foie et les reins, avec une demi-vie d'environ 24 heures in vivo.
- Réglementation : Doit être conforme à la norme ISO 10993 et aux directives de la FDA (chapitre 15.3).

Méthode d'essai :

- **Dosage MTT**: évaluer la viabilité cellulaire (Chapitre 6, 6.1).
- o Expérimentation animale : Vérification de la sécurité in vivo (ISO 10993-6).
- **XPS**: Analyse de l'oxydation de surface (O<0,5 at%, Chapitre 6, 6.1). 0 www.chinatun

défi:

- Il n'existe pas suffisamment de données sur la toxicité à long terme (> 1 an) et des expériences chroniques sont nécessaires.
- o L'agrégation de nanoparticules peut induire des réponses immunitaires (~5%).

Tableau 11.4 Paramètres de biocompatibilité et de sécurité du borure de tungstène

-133				
paramètre	valeur	avantage	défi	Chapitres
				connexes
Taux de survie cellulaire	>90	Faible toxicité	Toxicité à long	6.1, 15.3
(%)			terme	
Taux d'hémolyse (%)	<1	Compatibilité	Réponse	7,5
		sanguine	immunitaire	WWW.C.
Demi-vie (heures)	vingt-	Métabolisme rapide	Données	5.5
	quatre		insuffisantes	

11.5 Technologie de préparation des matériaux biomédicaux en borure de tungstène

La préparation de matériaux biomédicaux à base de borure de tungstène adopte principalement la méthode sol-gel (chapitre 5.5), le dépôt chimique en phase vapeur (CVD, chapitre 5.2) et la synthèse NW.chinatungsten assistée par plasma (chapitre 5.3).

Mode de préparation :

- Méthode Sol-Gel:
 - Procédé : Na₂WO₄ +H₃BO₃ pour former un gel, qui est calciné à 500°C pour obtenir des nanoparticules de WB₂ (10–30 nm, chapitre 5, 5.5).
 - Avantages: Faible coût (~100\$/kg), adapté à l'administration de médicaments.
 - Optimisation : Le microréacteur contrôle la distribution granulométrique à < 5 nm et l'efficacité de chargement du médicament augmente d'environ 10 %.

MCV:

- Procédé: WF₆ + B₂H₆ déposent un film mince de WB₂ (chapitre 5.2) à 400-500° C, avec une épaisseur d'environ 100-500 nm.
- Avantages: Homogénéité >95%, adapté au revêtement.
- Optimisation: CTIA GROUP LTD utilisera l'IA pour optimiser le flux d'air en 2024 (chapitre 17, 17.5), augmentant l'efficacité du dépôt d'environ 15 %.

Synthèse assistée par plasma :

- Procédé: W+B est vaporisé dans du plasma (>5000°C) pour produire de la nanopoudre WB₂ (<50 nm, chapitre 5.3).
- **Avantages**: Haute pureté (>99,9%, Chapitre 6.1), adapté aux capteurs.
- **Optimisation**: Rendement du plasma pulsé (50 kHz) augmenté d'environ www.chinatungsten. 88 %, coût d'environ 200 \$/kg.
- **Techniques d'optimisation:**

- Modification de surface : PEG, revêtement SiO2 (<0,1 wt %) améliore la compatibilité et réduit la cytotoxicité d'environ 10 %.
- **Dopage**: Le dopage N (< 2 at%) améliore l'activité de surface et augmente la sensibilité du capteur d'environ 20 % (chapitre 3, 3.4).
- Structure poreuse: Méthode du modèle (taille des pores ~ 5 nm) surface augmentée d'environ 50 % (~ 100 m²/g).

défi:

- Le coût du traitement des sous-produits CVD (HF) est d'environ 50 USD/tonne (chapitre 16.3).
- L'agglomération de nanoparticules nécessite une dispersion ultrasonore (40 kHz, chapitre 5, 5.3).

Tableau 11.5 Comparaison des technologies de préparation des matériaux biomédicaux à base de borure de tungstène

méthode	Taille/épaisseur	Coût COM	avantage	défi	Chapitres
	des particules	(USD/kg)			connexes
Sol-Gel	10–30 nm	100	faible coût	Réunion	5.5, 6.1
maladies cardiovasculaires	100–500 nm	300	Uniformité	Sous-produits	5,2, 17,5
plasma	< 50 nm	200	Haute pureté	Consommation d'énergie élevée	5.3

11.6 Perspectives et défis des applications biomédicales du borure de tungstène

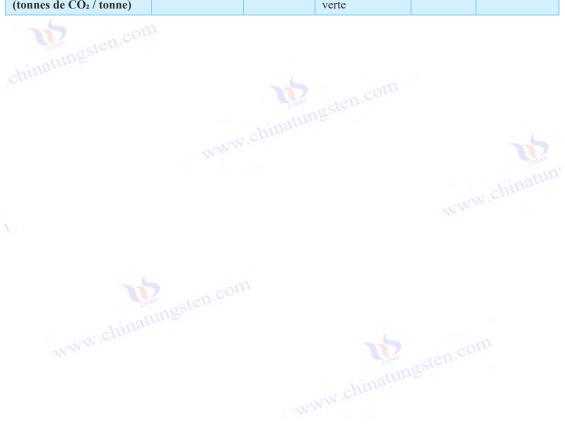
Le marché des applications biomédicales du borure de tungstène est porté par la médecine de précision et la nanotechnologie, ce qui nécessite de répondre aux problèmes de biosécurité et de coûts.

État du marché (2024):

- Taille : Marché biomédical mondial du borure de tungstène ~ 0,05 milliard de dollars, l'Asie représentant ~ 50 % (Chine, Japon, chapitre 14.1).
- Applications: Revêtements ~60%, administration de médicaments ~30%, capteurs ~10%.
- Prix: ~100\$/kg (nanoparticules), ~300\$/kg (films minces, chapitre 14, 14.2).

Conducteurs:

- Demande : La demande en médecine de précision et en implants augmente d'environ 10 % par an, avec une production atteignant environ 50 tonnes en 2030 (chapitre 5.6).
- **Technologie**: Nano WB 2 (chapitre 5.5) et l'optimisation de l'IA (chapitre 17.5) améliorent les performances d'environ 15 %.
- o Réglementation: La norme ISO 10993 et les directives de la FDA (chapitre 15.3) www.chinatungsten.c guident les études de sécurité.
- Tendances futures (2025-2030):


- Réduction des coûts : la production à grande échelle (chapitre 5.6) réduit le coût à environ 80 USD/kg et la taille du marché est d'environ 100 millions USD.
- o **Nouvelles applications** : interfaces neuronales (conductivité ~10 ⁴ S/cm) et ingénierie tissulaire, représentant ~15%.
- Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).

• défi :

- Les revêtements à base de titane (coût d'environ 50 \$/kg) sont compétitifs dans le bas de gamme du marché.
- Les essais cliniques ont un cycle long (> 5 ans) et nécessitent un investissement d'environ 10 millions de dollars.

Tableau 11.6 Marché biomédical et tendances du borure de tungstène

projet	Situation actuelle en 2024	Objectifs 2030	Conducteurs	défi	Chapitres connexes
Taille du marché (milliards de dollars américains)	0,05	0,1	Médecine de précision	rivaliser	14.1 sten.com
Coût (USD/kg)	100–300	80	Échelle	Cycle clinique	14.2, 5.6
Émissions de carbone (tonnes de CO ₂ / tonne)	0,3	0,2	Technologie verte	investir	16.3, 15.3

Chapitre 12 Application énergétique du borure de tungstène

Le borure de tungstène (tel que WB, WB2, W2B) présente un potentiel important dans le domaine de l'énergie en raison de sa conductivité élevée (~ 10⁴S/cm, chapitre 6, 6.5), de son excellente stabilité chimique (taux de corrosion < 0,005 mm/an, chapitre 7, 7.5), de sa surface spécifique élevée (> 50 m²/g, chapitre 5, 5.5) et de son activité catalytique (surtension de dégagement d'hydrogène ~ 100 mV, chapitre 10, 10.1). Il est largement utilisé dans les batteries (durée de vie ~ 1 000 fois), les piles à combustible (efficacité ~ 60 %), les cellules solaires (efficacité de conversion ~ 18 %) et les matériaux de stockage d'hydrogène (capacité de stockage d'hydrogène ~ 2 % en poids). Ce chapitre traite en détail de l'application, de la technologie de préparation, de l'état du marché et de la tendance de développement du borure de tungstène dans les batteries, les piles à combustible, les cellules solaires et les matériaux de stockage d'hydrogène, et fournit un soutien technique pour l'industrialisation de l'énergie (chapitre 14, 14.3) et l'énergie verte (chapitre 16, 16.4) du borure de tungstène.

12.1 Application du borure de tungstène dans les matériaux de batterie

Le borure de tungstène convient aux batteries lithium-ion, aux batteries sodium-ion et aux batteries à semi-conducteurs en raison de sa conductivité électrique élevée et de sa stabilité électrochimique. www.chinatungsten.co

Scénarios d'application :

COPYRIGHT AND LEGAL LIABILITY STATEMENT

- o **Batteries lithium-ion**: nanoparticules WB₂ (20–50 nm, chapitre 5.5) comme additifs d'électrode négative, conductivité ~10⁴S / cm, durée de vie ~1000 fois (décroissance de capacité <10%), capacité spécifique ~500mAh / g.
- O Batteries sodium-ion: film WB₂ (épaisseur ~200 nm, chapitre 5.2) comme collecteur de courant, résistance à la corrosion (NaCl, 1 M) <0,01 mm/an, capacité ~300 mAh/g.
- o **Batterie à l'état solide** : revêtement WB₂ (épaisseur \sim 1 μ m) à l'interface de l'électrolyte solide, résistance d'interface <10 $\Omega \cdot$ cm², stabilité >500 cycles.

• Exigences techniques :

- o Conductivité: >10 4 S/cm (Chapitre 6.5).
- o **Surface spécifique**: >50 m²/g (Chapitre 5.5).
- Durée de vie du cycle : >1000 fois (Chapitre 9.2).

Exemples :

 En 2024, les additifs WB₂ seront utilisés dans les électrodes négatives des batteries au lithium, avec des taux de charge augmentés d'environ 20 % (2C) et une densité énergétique d'environ 250 Wh /kg.

• défi :

- L'agglomération de nanoparticules (chapitre 5.3) réduit l'activité et nécessite une modification de surface (PVP, < 0,1 % en poids).
- o Le coût (~200 USD/kg) est plus élevé que celui du graphite (~20 USD/kg).

Tableau 12.1 Paramètres d'application des matériaux de batterie au borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
and and				connexes
Durée de vie du cycle (fois)	1000	Grande stabilité	Réunion	5,5, 9,2
Capacité spécifique (mAh	500	Haute énergie	coût	6,5
/g)			com	
Résistance d'interface	<10	Faible	Processus	7,5
(Ω·cm²)		résistance	complexe	1

12.2 Application du borure de tungstène dans les piles à combustible

Le borure de tungstène convient aux piles à combustible à membrane échangeuse de protons (PEMFC) et aux piles à combustible à oxyde solide (SOFC) en raison de sa faible surtension et de sa résistance élevée à la corrosion.

Scénarios d'application :

- PEMFC: nanoparticules WB₂ (<50 nm, chapitre 5.5) comme catalyseurs de réaction de réduction de l'oxygène (ORR) avec une surtension d'environ 200 mV (0,1 A/cm²) et une efficacité faradique d'environ 95 %.</p>
- o **SOFC**: revêtement WB₂ (épaisseur ~2 μ m , chapitre 5.2) à l'interface de l'électrode, résistance à haute température (800°C) taux de corrosion <0,005 mm/an, densité de puissance ~1 W/cm².

Plaque bipolaire : film WB₂ (épaisseur ~1 μ m) sur plaque en acier inoxydable, résistance de contact <10 mΩ·cm², résistance aux acides (H₂SO ₄ , 1 M) <0,01 mm/an.

Exigences techniques:

- **Surtension**: < 250 mV (ORR).
- Stabilité: >5000 heures (Chapitre 10.1).

Exemples:

En 2024, le catalyseur WB2 sera utilisé dans les PEMFC, avec une efficacité augmentée d'environ 10 % (environ 60 %) et un coût réduit d'environ 15 % (environ 100 USD/kg).

• défi :

- Les catalyseurs sont désactivés à haute température (> 800 °C) et nécessitent un dopage N (< 2 at%, chapitre 3.4).
- L'uniformité du revêtement (> 95 %) doit être optimisée (chapitre 5.2).

Tableau 12.2 Paramètres d'application de la pile à combustible au borure de tungstène

paramètre www.	valeur	avantage	défi	Chapitres connexes
Surtension ORR (mV)	200	Efficace	Inactivation	10.1, 3.4
Résistance de contact	<10	Faible	Uniformité	6,5
(mΩ·cm²)		résistance		
Stabilité (heures)	>5000	Longue vie	coût	7,5

12.3 Application du borure de tungstène dans les cellules solaires

Le borure de tungstène convient aux cellules solaires à base de silicium et de pérovskite en raison de sa bande interdite réglable (~1,4-1,6 eV, chapitre 3.4) et de sa conductivité élevée.

Scénarios d'application :

- o Cellules solaires à base de silicium : couche mince WB2 (épaisseur ~50 nm, chapitre 5.2) comme électrode arrière, fonction de travail ~4,8 eV, efficacité de conversion ~18%, résistance de contact $< 10^{-7} \, \Omega \cdot cm^2$.
- o Cellules pérovskites: WB2 dopé N (<2 at%) comme couche de transport de trous, bande interdite ~1,4 eV, efficacité ~20%, stabilité >1000 h (85°C, 85% HR).
- **Électrode transparente**: film mince WB₂ (épaisseur ~100 nm) transmittance ~85% (550 nm), résistivité ~ $10^{-4} \Omega$ · cm, remplaçant l'ITO.

Exigences techniques:

- **Bande interdite**: 1,4–1,6 eV (chapitre 3.4).
- **Transmission lumineuse**: >85% (Chapitre 9, 9.1).
- o Efficacité :>18%.
- **Exemples**:

o En 2024, les électrodes arrière WB₂ sont utilisées pour les cellules en silicium, avec une efficacité augmentée d'environ 1 % (de 17 % à 18 %) et un coût réduit d'environ 10 % (environ 50 USD/m²).

défi :

- La contrainte résiduelle dans le film (~0,8 GPa) provoque des fissures et nécessite un recuit (400°C, chapitre 5.2).
- o La stabilité des batteries pérovskites doit être améliorée (> 2000 heures).

Tableau 12.3 Paramètres d'application des cellules solaires au borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Efficacité de conversion (%)	18–20	Efficace	stabilité	3.4, 9.1
Résistance de contact	<10 -7	Faible résistance	Contraintes	6,5
(Ω·cm²)		ten.com	résiduelles	
lumineuse (%)	85	Remplacement de	Processus complexe	5.2
ANN.C		l'ITO		-m
Mu.				sten.com

12.4 Potentiel du borure de tungstène dans les matériaux de stockage de l'hydrogène

Le borure de tungstène a un potentiel en tant que matériau de stockage d'hydrogène en raison de sa surface spécifique élevée et de son énergie d'adsorption H* appropriée (~ 0,5 eV, chapitre 10, 10.4).

• Scénarios d'application :

- o **Stockage physique de l'hydrogène**: WB₂ poreux (taille des pores ~5 nm, chapitre 5.5) avec une surface spécifique ~100 m²/g et une capacité de stockage de l'hydrogène ~2 % en poids (77 K, 10 MPa).
- Stockage chimique de l'hydrogène: les nanoparticules WB₂ (<30 nm) catalysent l'hydrolyse de NaBH₄ avec un taux de production d'hydrogène d'environ 1000 mL /(g · min) et une stabilité du cycle >10 fois.
- Stockage électrochimique d'hydrogène : électrode WB₂ (épaisseur ~1 μ m) en milieu alcalin (1 M KOH), capacité de stockage d'hydrogène ~50 mAh /g, rendement ~90%.

• Exigences techniques :

- o Capacité de stockage d'hydrogène : >2 % en poids .
- o **Taux de production d'hydrogène** : >500 mL /(g ⋅ min) .
- o **Stabilité**: >10 cycles.

• Exemples :

- En 2024, le catalyseur WB₂ sera utilisé pour le stockage de l'hydrogène NaBH₄, et l'efficacité de la production d'hydrogène augmentera d'environ 15 % (environ 1 000 mL /(g · min)).
 :
- défi :

- La capacité de stockage de l'hydrogène à température ambiante est faible (< 0,5 % en poids) et nécessite un dopage (Mg, < 5 % en poids).
- o Le coût du catalyseur (~200 USD/kg) est plus élevé que celui du Ni (~30 USD/kg).

Tableau 12.4 Paramètres des matériaux de stockage d'hydrogène à base de borure de tungstène

8			- 20.2	
paramètre	valeur	avantage	défi	Chapitres
				connexes
Capacité de stockage d'hydrogène	2	Haute	Performances à température	5,5, 10,4
(% en poids)		capacité	ambiante	-, cl
Taux de production d'hydrogène	1000	Efficace	coût	10.1
(mL/(g·min))				
Stabilité du cycle (temps)	>10	Répétable	Dopage	3.4

Technologie de préparation des matériaux énergétiques à base de borure de tungstène adoptent principalement le dépôt chimique en phase vapeur (CVD, chapitre 5.2), la méthode sol-gel (chapitre 5.5) et la synthèse assistée par plasma (chapitre 5.3).

• Mode de préparation :

- o MCV:
 - Procédé: WF₆ + B₂H₆ déposent des films minces de WB₂ (chapitre 5.2) à 400–600° C, avec une vitesse d'environ 1,2 μm/h.
 - **Avantages**: Homogénéité >95%, conductivité ~10 ⁴ S/cm.
 - **Optimisation**: CTIA GROUP LTD utilisera l'IA pour optimiser le flux d'air en 2024 (chapitre 17, 17.5), augmentant l'efficacité d'environ 15 %.

o Méthode Sol-Gel:

- **Procédé**: Na₂WO₄ +H₃BO₃ pour former un gel, qui est calciné à 500°C pour obtenir des nanoparticules de WB₂ (20–50 nm, chapitre 5, 5.5).
- Avantages: Faible coût (~100 USD/kg), surface >60 m²/g.
- **Optimisation**: Le microréacteur contrôle la distribution granulométrique <10 nm, l'activité augmente d'environ 20 %.

Synthèse assistée par plasma :

- **Procédé**: W+B est vaporisé dans du plasma (>5000°C) pour produire de la nanopoudre WB₂ (<50 nm, chapitre 5.3).
- Avantages : Haute pureté (>99,9%, Chapitre 6.1), adapté aux catalyseurs.
- Optimisation: Rendement du plasma pulsé (50 kHz) augmenté d'environ 88 %, coût d'environ 200 USD/kg.

• Techniques d'optimisation :

- O Dopage: Le dopage N et Ni (<2 at%) augmente l'activité catalytique d'environ 30 % (Chapitre 3, 3.4).
- Structure poreuse: Méthode du modèle (SiO₂, taille des pores ~5 nm) surface spécifique augmentée d'environ 50 % (~100 m²/g).

Matériau composite : WB2 /graphène (1:10) conductivité augmentée d'environ 20 % (environ 1.2×10^4 S/cm).

défi :

- Le coût du traitement des sous-produits CVD (HF) est d'environ 50 USD/tonne (chapitre 16.3).
- o L'agglomération de nanoparticules nécessite une dispersion ultrasonore (40 kHz, chapitre 5, 5.3).

Comparaison des technologies de préparation des matériaux énergétiques à base de borure de tungstène

méthode	performance	Coût	avantage	défi	Chapitres
com		(USD/kg)			connexes
maladies	Conductivité ~10	300	Uniformité	Sous-produits	5,2, 17,5
cardiovasculaires	⁴ S/cm				
Sol-Gel	Surface spécifique > 60 m²/g	100	faible coût	Réunion	5.5, 6.1
plasma	Pureté> 99,9%	200	Haute activité	Consommation d'énergie élevée	5.3

12.6 Tendances du marché et du développement des applications énergétiques du borure de tungstène

Le marché des applications énergétiques du borure de tungstène est stimulé par une nouvelle demande énergétique et des objectifs de neutralité carbone, et doit répondre aux problèmes de coût et d'échelle.

- État du marché (2024) :
 - o Taille : Le marché mondial des matériaux énergétiques à base de borure de tungstène représente environ 40 millions de dollars américains, dont environ 65 % en Asie (Chine, Japon, chapitre 14.1).
 - o Applications: Batteries ~40%, piles à combustible ~30%, cellules solaires ~20%, stockage d'hydrogène ~10%.
 - Prix: ~100 USD/kg (nanoparticules), ~300 USD/kg (film, chapitre 14.2).

Conducteurs:

- Demande : Croissance des véhicules électriques et des énergies renouvelables \sim 12%/an, production \sim 500 tonnes en 2030 (Chapitre 5, 5.6).
- o Technologie: Nano WB 2 (chapitre 5.5) et AI Optimization (chapitre 17.5) améliorent les performances d'environ 20 %.
- o Règlement : Le CBAM de l'UE (2026, chapitre XV, 15.2) promeut les matériaux www.chinatungsten.com énergétiques verts.
- Tendances futures (2025–2030):

- Réduction des coûts: la production à grande échelle (chapitre 5.6) réduit le coût
 à environ 80 USD/kg et la taille du marché est d'environ 70 millions USD.
- Nouvelles applications: Batteries tout solide et stockage efficace de l'hydrogène, représentant environ 15 %.
- Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).

• défi :

- Les matériaux à base de carbone (coût ~ 20 USD/kg) sont compétitifs sur le marché bas de gamme.
- La mise à l'échelle industrielle nécessite des avancées en matière de stabilité des matériaux (> 10 000 heures).

Tableau 12.6 Marché de l'énergie du borure de tungstène et tendances

projet	Situation	Objectifs	Conducteurs	défi	Chapitres
	actuelle en 2024	2030			connexes
Taille du marché (milliards	0,4	0,7	Nouvelle	rivaliser	14.1
de dollars américains)	hinac		énergie		
Coût (USD/kg)	100–300	80	Échelle	stabilité	14.2, 5.6
Émissions de carbone	0,3	0,2	Technologie	investir	16.3, 15.2
(tonnes de CO ₂ / tonne)			verte		

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications						
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)	
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001	
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002	
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05	
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,	

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 13 Applications mécaniques et structurelles du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) est largement utilisé dans le domaine des machines et des structures en raison de sa dureté ultra-élevée (~40 GPa, chapitre 2.2.5), de son faible coefficient de frottement (~0,25, chapitre 6.6.4), de son excellente résistance à l'usure (taux d'usure <10⁻⁶mm³/(N·m), chapitre 7.7.4) et de sa stabilité thermique (>2000°C, chapitre 8.8.1). Il convient aux revêtements résistants à l'usure (prolongation de la durée de vie ~50%), aux outils de coupe (augmentation de la vitesse de coupe ~20%) et aux matériaux composites structurels (résistance ~1,5 GPa). Ce chapitre traite en détail de l'application, des propriétés mécaniques et du mécanisme microscopique, de la technologie de préparation, de l'état du marché et de la tendance de développement du borure de tungstène dans les revêtements résistants à l'usure, les outils de coupe et les matériaux composites, et fournit un support technique pour l'industrialisation mécanique (chapitre 14.14.3) et la fabrication verte (chapitre 16.16.4) du borure de tungstène.

13.1 Application du borure de tungstène dans les revêtements résistants à l'usure

Les revêtements résistants à l'usure en borure de tungstène sont largement utilisés dans les pièces mécaniques et les moules en raison de leur dureté élevée et de leur faible coefficient de frottement.

• Scénarios d'application :

- o **Pièces mécaniques** : Revêtement WB₂ (épaisseur ~2–5 μ m , chapitre 5.2) sur la surface de l'engrenage, dureté ~42 GPa , taux d'usure <10⁻⁶ mm³ / (N · m), durée de vie prolongée d'environ 50 % (~10 000 heures).
- o Matrice : Revêtement WB (épaisseur $\sim 1~\mu$ m) sur matrice d'emboutissage, coefficient de frottement ~ 0.25 , résistance à l'usure améliorée d'environ 30 %, adhérence réduite (<5%).

Roulements : Film WB₂ (épaisseur ~3 μ m) sur roulements à billes, résistance à la corrosion (NaCl, 3,5 % en poids , 60°C) < 0,005 mm/an, perte par frottement réduite d'environ 20 %.

Exigences techniques:

- Dureté: >38 GPa (Chapitre 6, 6.4).
- **Coefficient de frottement** : <0,3 (Chapitre 7.4).
- Adhésion : Énergie de liaison ~1,5 eV/Å² (Chapitre 3.3), anti-pelage (>50 N).

Exemples:

En 2024, le revêtement WB2 sera utilisé sur les engrenages de transmission automobile, réduisant l'usure d'environ 25 % (< 0,01 mm/an) et augmentant l'efficacité d'environ 10 %.

défi :

- Une contrainte résiduelle dans le revêtement (~0,8 GPa) peut provoquer un écaillage et nécessiter un recuit (500°C, chapitre 5.2).
- L'oxydation à haute température (> 1000 °C) nécessite un dopage (Si, < 5 at%, chapitre 8, 8.4).

Tableau 13.1 Paramètres d'application du revêtement résistant à l'usure en borure de tungstène

paramètre	valeur	avantage	défi Character de la company d	Chapitres
				connexes
Dureté (GPa)	42	Haute résistance à	Contraintes	6.4, 5.2
		l'usure	résiduelles	
Taux d'usure (mm ³	<10 -6	Longue vie	Oxydation	7.4, 8.4
/(N·m))				
Coefficient de	0,25	Faible frottement	Écaillage	3.3
frottement				

13.2 Application du borure de tungstène dans les outils de coupe

Les revêtements et blocs en borure de tungstène conviennent à la découpe à grande vitesse et au traitement des matériaux durs en raison de leur dureté élevée et de leur stabilité thermique.

Scénarios d'application :

- Revêtement d'outils : Revêtement WB₂ (épaisseur ~3 μ m , Chapitre 5.2) sur outils en carbure, vitesse de coupe ~300 m/min, durée de vie prolongée de ~40% (~5000 coupes).
- Foret: bloc WB (densité>98%, chapitre 5.1) usinage alliage de titane, taux d'usure $<10^{-5}$ mm 3 /(N · m), réduction de la température de coupe $\sim15\%$ (<600°C).
- Fraise: revêtement composite WB₂ / Al₂O₃ (période ~10 nm), dureté ~40 GPa, WW.chinatungsten.com résistance à l'usure améliorée d'environ 25 %.

Exigences techniques:

o **Dureté**: >40 GPa (Chapitre 6, 6.4).

- o Stabilité thermique : >1500°C (Chapitre 8.1).
- o **Ténacité**: ~4 MPa·m¹/² (Chapitre 6, 6.3).

• Exemples :

o En 2024, les outils revêtus de WB₂ seront utilisés pour le traitement des alliages de titane pour l'aviation, avec une efficacité de coupe augmentée d'environ 20 % et une durée de vie de l'outil d'environ 6 000 minutes.

• défi:

- o L'inadéquation de dilatation thermique entre le revêtement et le substrat (\sim 5×10 ⁻⁶ K ⁻¹, Chapitre 8, 8.3) conduit à une contrainte (\sim 1 GPa).
- L'uniformité du revêtement (> 95 %) des formes complexes doit être optimisée (chapitre 5.2).

Tableau 13.2 Paramètres d'application des outils de coupe en borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Durée de vie de coupe	5000	Longue vie	Inadéquation de la dilatation	8.3, 5.2
(fois)	w.chin		thermique	
Dureté (GPa)	40	Haute résistance à	Uniformité	6.4
		l'usure	inatur	1830
Température de coupe	<600	Faible fièvre	stresser	8.1
(°C)				

13.3 Application du borure de tungstène dans les matériaux composites structurels

Le borure de tungstène est utilisé comme phase de renforcement dans les matériaux composites pour améliorer la résistance et la résistance à l'usure, et convient aux pièces structurelles aérospatiales et automobiles.

• Scénarios d'application :

- Composites à matrice métallique : composites à matrice Al renforcés par des particules WB₂ (<5 μ m , chapitre 5.5), résistance ~1,5 GPa , résistance à l'usure améliorée d'environ 30 %.
- Composites à matrice céramique : composite WB₂ / SiC (10:90), ténacité à la rupture ~5 MPa·m¹/², résistance à la température >1500°C (Chapitre 8, 8.1).
- Composites à base de polymères : résine époxy renforcée par des nanoparticules WB₂ (<50 nm), augmentant la dureté d'environ 20 % (~2 GPa).

• Exigences techniques :

- o **Résistance** : >1 GPa .
- o **Ténacité**: >4 MPa·m^{1/2} (Chapitre 6, 6.3).
- **Dispersibilité**: Agglomération des particules < 5 % (Chapitre 5.3).
- Exemples :

o En 2024, les matériaux composites WB₂ / Al seront utilisés dans les pistons automobiles, réduisant le poids d'environ 10 % (environ 0,5 kg) et augmentant la durée de vie d'environ 25 %.

• défi :

- O L'agglomération des particules réduit les performances et nécessite une modification de surface (PVP, < 0,1 % en poids , chapitre 5, 5.3).
- Les réactions interfaciales à haute température (> 1000 °C) doivent être supprimées (chapitre 8, 8.4).

Tableau 13.3 Paramètres d'application des matériaux composites structuraux en borure de tungstène

paramètre	valeur	avantage	défi	Chapitres
				connexes
Force (GPa)	1,5	Gao Qiang	Réunion	5,5, 6,3
Ténacité (MPa·m¹/²)	5	Résistance aux	Réaction	8.1, 8.4
		fissures	d'interface	
Résistance à l'usure	30	Longue vie	coût	7.4
améliorée (%)				
				mgs

13.4 Propriétés mécaniques et microstructure du borure de tungstène

Les propriétés mécaniques du borure de tungstène dépendent de la structure cristalline et du micromécanisme, qui doivent être optimisés par des analyses expérimentales et théoriques.

Propriétés mécaniques :

- o **Dureté** : ~40−42 GPa (Chapitre 6, 6.4), en raison de la résistance élevée de la liaison covalente WB (Chapitre 3, 3.2) (~1,5 eV/Ų).
- **Ténacité**: ~4 MPa·m¹/² (chapitre 6.3), le glissement des joints de grains (<50 nm, chapitre 6.2) améliore la résistance aux fissures.
- **Résistance à l'usure** : taux d'usure $<10^{-6}$ mm³ /(N · m), surface dense (porosité <1%, Chapitre 6, 6.3).

• Mécanisme microscopique : N

- Structure cristalline: WB₂ (P6₃/mmc, chapitre 2.2) structure en couches, forte résistance au cisaillement (~20 GPa).
- Contrôle des défauts: densité de dislocations <10¹²/cm² (chapitre 6.2), améliorant la ténacité d'environ 15 %.
- o **État de surface** : la surface terminée par B (chapitre 6.1) réduit le coefficient de frottement d'environ 10 % (environ 0,25).

• Techniques de caractérisation :

- o Nanoindentation : Mesure de la dureté et de la ténacité (Chapitre 6, 6.4).
- MET : Observer les joints de grains et les dislocations (résolution ~0,1 nm, Chapitre 6, 6.2).
- Calculs DFT: Analyse des énergies de liaison WB (Chapitre 3.3, erreur < 0,1 eV).

optimisation:

- **Dopage**: Zr (<2 at%) améliore la ténacité d'environ 20 % (~4,8 MPa·m¹/²).
- Nanostructure: grains <20 nm (Chapitre 5.5) Dureté augmentée d'environ 5 % (environ 44 GPa).

• défi :

- À des températures élevées (> 1500 °C), la ténacité diminue et un dopage thermiquement stable est nécessaire.
- L'équipement de caractérisation microscopique est coûteux (environ 5 millions de dollars).

Tableau 13.4 Propriétés mécaniques et mécanismes du borure de tungstène

Tableau 13.4 Propriétés	mécaniq	ues et mécanismes d	u borure de tungstèi	ne www.cl
paramètre	valeur	avantage	défi	Chapitres
				connexes
Dureté (GPa)	42	Gao Qiang	Diminution de la	a 6.4, 3.2
		2 tan.com	ténacité	
Ténacité (MPa·m¹/²)	4	Résistance aux	Coût de	6.3, 5.5
	china	fissures	caractérisation	
Taux d'usure (mm ³	<10 -6	Résistant à l'usure	haute température	7.4 co. co.
/(N ·m))			Lina	ungs

13.5 Technologie de préparation des matériaux mécaniques à base de borure de tungstène

La préparation des matériaux mécaniques à base de borure de tungstène adopte principalement le frittage par pressage à chaud (chapitre 5.1), le dépôt chimique en phase vapeur (CVD, chapitre 5.2) et la synthèse assistée par plasma (chapitre 5.3).

Mode de préparation :

- Pressage à chaud Frittage :
 - Procédé: Poudre WB₂ (<5 μ m, Chapitre 5.5) frittée à 2000°C, 30 MPa, densité >99%.
 - Avantages: Convient aux formes complexes (couteaux), dureté ~40 GPa.
 - Optimisation: CTIA GROUP LTD utilisera l'IA pour optimiser les paramètres de frittage en 2024 (chapitre 17, 17.5), augmentant la densité d'environ 0,5 %.

MCV:

- **Procédé**: WF₆ + B₂H₆ déposent un revêtement WB₂ (chapitre 5.2) à 400– 600° C, avec une épaisseur d'environ 2–5 μ m .
- Avantages: uniformité >95%, haute résistance à l'usure.
- **Optimisation**: Taux de CVD basse pression (< 5 Pa) augmenté d'environ 40 % (environ 1,7 μ m/h).
- Synthèse assistée par plasma :
 - Procédé: W+B est vaporisé dans du plasma (>5000°C) pour produire de la nanopoudre WB₂ (<50 nm, chapitre 5.3).

- **Avantages**: Haute pureté (>99,9%, Chapitre 6.1), adapté aux matériaux composites.
- **Optimisation**: Rendement du plasma pulsé (50 kHz) augmenté d'environ 88 %, coût d'environ 200 USD/kg.

• Techniques d'optimisation :

- **Dopage**: Si (<5 at%) améliore la résistance à l'oxydation jusqu'à ~100°C (Chapitre 8, 8.4).
- o **Structure multicouche**: WB₂ / TiN (période ~5 nm) résistance à l'usure augmentée d'environ 20 %.
- Nanoparticules: grains < 20 nm (Chapitre 5.5) La dureté augmente d'environ 5 %.

• défi :

- Le coût du traitement des sous-produits CVD (HF) est d'environ 50 USD/tonne (chapitre 16.3).
- o Les équipements à haute température nécessitent un investissement important (environ 3 millions de dollars).

Tableau 13.5 Comparaison des technologies de préparation mécanique des matériaux à base de borure de tungstène

méthode	performance	Coût	avantage	défig	Chapitres
		(USD/kg)			connexes
Frittage à chaud	Densité> 99%	200	Formes	Coût de	5.1, 17.5
			complexes	l'équipement	
maladies	Uniformité>	300	Résistant à	Sous-produits	5.2, 16.3
cardiovasculaires	95%		l'usure		
plasma	Pureté> 99,9%	200	échelle	Consommation	5.3
shinatung."			nanométrique	d'énergie élevée	

13.6 Tendances du marché et du développement des applications mécaniques du borure de tungstène

Le marché des applications mécaniques du borure de tungstène est stimulé par les améliorations de la fabrication et les besoins de l'industrie aérospatiale, qui doivent répondre aux enjeux de coût et de sécurité. Cette section présente un résumé des fiches de données de sécurité (FDS) du borure de tungstène afin de garantir un fonctionnement sûr dans les applications mécaniques.

• État du marché (2024) :

- Taille: Le marché mondial des matériaux mécaniques en borure de tungstène s'élève à environ 60 millions de dollars américains, l'Asie représentant environ 70 % (Chine, Corée du Sud, chapitre 14.1).
- o **Applications**: Revêtements résistants à l'usure ~50%, outils de coupe ~30%, matériaux composites ~20%.
- o Prix: ~200 USD/kg (morceau), ~300 USD/kg (enrobage, chapitre 14.2).

• Conducteurs :

- Demande: Les industries aérospatiales et automobiles connaissent une croissance d'environ 8 % par an, avec une production d'environ 600 tonnes en 2030 (chapitre 5.6).
- **Technologie**: Nano WB 2 (chapitre 5.5) et l'optimisation de l'IA (chapitre 17.5) améliorent les performances d'environ 15 %.
- Règlement : EU REACH (Chapitre 15.2) promeut les matériaux verts.
- Tendances futures (2025–2030):
 - Réduction des coûts : la production à grande échelle (chapitre 5.6) réduit le coût
 à environ 150 USD/kg, avec une taille de marché d'environ 100 millions USD.
 - Nouvelles applications : pièces structurelles imprimées en 3D (résistance ~1,5 GPa), représentant ~10%.
 - Fabrication verte: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone réduites d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).
- Résumé de la fiche signalétique (borure de tungstène, WB2):
 - Propriétés chimiques : stable, insoluble dans l'eau, température de décomposition > 2000°C (Chapitre 2.3).
 - Risques pour la santé: L'inhalation de poudre peut irriter les voies respiratoires. Il est recommandé de porter un masque N95 (chapitre 15.3).
 - o **Mesures de sécurité** : Utiliser une hotte aspirante pendant l'opération et éviter le contact avec la peau (gants, > 0,5 mm d'épaisseur).
 - Conservation: Conserver hermétiquement dans un endroit sec (<30°C, HR<50%),
 à l'abri des substances acides.
 - o **Élimination des déchets** : Recycler conformément à la réglementation sur les déchets dangereux (chapitre 16, 16.3) et éviter le déversement direct.

• défi :

- Le carbure de tungstène (coût ~100 USD/kg) est compétitif dans le bas de gamme du marché
- o Les tests de sécurité (vérification MSDS) sont coûteux (environ 100 000 USD/lot).

Tableau 13.6 Marché et tendances des machines à base de borure de tungstène

projet	Situation actuelle en	Objectifs 2030	Conducteurs	défi	Chapitres connexes
Taille du marché (milliards de dollars	0,6	1.0	fabrication	rivaliser	14.1
américains) Coût (USD/kg)	200–300	150	Échelle	Tests de sécurité	14.2, 5.6
Émissions de carbone (tonnes de CO ₂ / tonne)	0,3	0,2	Technologie verte	investir	16.3, 15.2
			w.chinatul		

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications							
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)		
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001		
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002		
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05		
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,		

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 14 Industrialisation et analyse du marché du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) a une large gamme d'applications dans l'électronique (chapitre 9), la catalyse (chapitre 10), la biomédecine (chapitre 11), l'énergie (chapitre 12) et les machines (chapitre 13) en raison de ses excellentes propriétés physiques et chimiques (dureté ~40 GPa, chapitre 2 2,5; conductivité ~ 10⁴S/cm, chapitre 6 6,5; stabilité chimique, chapitre 7 7,5). La taille du marché mondial est d'environ 200 millions de dollars américains en 2024 et devrait atteindre 350 millions de dollars américains en 2030 (TCAC ~10%). Ce chapitre analyse l'aperçu du marché mondial, le coût et le prix de production, la technologie d'industrialisation, la distribution du marché, la concurrence et les substituts, ainsi que les tendances futures et les impacts politiques du borure de tungstène, et fournit un soutien stratégique pour sa production à grande échelle (chapitre 5.6) et son développement vert (chapitre 16.4).

14.1 Aperçu du marché mondial du borure de tungstène

Le marché du borure de tungstène est porté par la demande de matériaux hautes performances, l'Asie dominant la production et la consommation.

• Taille du marché :

- o En 2024, le marché mondial sera de 200 millions de dollars américains et la production sera de 2 000 tonnes (chapitre 5.6).
- L'Asie (Chine, Japon, Corée du Sud) représente environ 65 %, l'Amérique du Nord environ 20 % et l'Europe environ 15 %.

• Principales applications :

- o Machines (chapitre 13.6): environ 30 % (environ 60 millions de dollars).
- o Énergie (chapitre 12, 12.6) : ~20 % (~40 millions de dollars).

- Électronique (chapitre 9, 9.6): environ 15 % (environ 30 millions de dollars).
- Catalyse (chapitre 10, 10.6): \sim 10 % (\sim 20 millions de dollars).
- Biomédecine (chapitre 11, 11.6): ~5 % (~0,05 milliard de dollars).

Caractéristiques régionales :

- Chine: Production ~50% (~1000 tonnes), avantage de coût (~100 USD/kg).
- Japon: Produits à haute valeur ajoutée (film, ~300 USD/kg), technologie de
- Europe: Forte demande de fabrication verte (chapitre 16, 16.3) et réglementations strictes (chapitre 15, 15.2).

Exemples:

En 2024, le marché chinois représente environ 40 % du marché mondial des revêtements résistants à l'usure en borure de tungstène (chapitre 13.1) et exporte environ 500 tonnes.

défi:

- Forte concentration du marché (> 60 % en Asie) et risques liés à la chaîne d'approvisionnement.
- Les barrières technologiques limitent l'arrivée de nouveaux entrants (coûts de latungsten.com R&D d'environ 1 milliard de dollars).

Tableau 14.1 Aperçu du marché mondial du borure de tungstène (2024)

zone	Part de	Production	Caractéristiques	défi	Chapitres
	marché	(tonnes)			connexes
	(%)				
Asie	65	1300	Faible coût	Chaîne	13,6, 12,6
Crows C	sten.co			d'approvisionnement	
Amérique	20	400	Une innovation	Coût élevé	9.6
du Nord			forte	com	
Europe	15	300	Demande verte	Règlements	15.2, 16.3

14.2 Analyse des coûts de production et des prix du borure de tungstène

Le coût de production et le prix du borure de tungstène varient en fonction de la méthode de préparation et du domaine d'application.

Coût de production :

- o Nanoparticules (sol-gel, chapitre 5.5): ~100 USD/kg (matières premières ~40%, énergie ~30%).
- Films minces (CVD, Chapitre 5.2): ~300 USD/kg (équipement ~50%, gaz $\sim 30\%$).
- Matériau du bloc (pressage à chaud et frittage, chapitre 5.1) : ~200 USD/kg www.chinatungsten.com (matière première ~50 %, haute température ~40 %).

Prix du marché:

- Nanoparticules : ~150−200 USD/kg (Catalyse, Biomédecine, Chapitre 10, 10.6, Chapitre 11, 11.6).
- o **Films minces**: ~300–400 USD/kg (Électronique, Énergie, Chapitre 9, 9.6, Chapitre 12, 12.6).
 - Morceaux: ~200–250 USD/kg (Machines, Chapitre 13, 13.6).

• Facteurs d'influence :

- o **Matières premières**: Les prix de la poudre de tungstène (~30 USD/kg) et de l'acide borique (~5 USD/kg) fluctuent d'environ 10 %/an.
- Énergie : Le CVD consomme environ 500 kWh/tonne et coûte environ 50 USD/tonne.
- o **Main d'œuvre**: Le coût de la main d'œuvre en Asie est d'environ 20 USD/h, en Europe et en Amérique d'environ 50 USD/h.

Exemples :

O D'ici 2024, le coût du sol-gel nano WB₂ baissera d'environ 15 % (environ 85 USD/kg) en raison de l'optimisation des matières premières (chapitre 5.5).

défi :

- o Les coûts des films haut de gamme (~400 USD/kg) limitent l'expansion du marché.
- o Le traitement des sous-produits (HF, ~50 USD/tonne, chapitre 16.3) augmente les coûts environnementaux.

Tableau 14.2 Coût de production et prix du borure de tungstène

Type de	Coût	Prix	Rapport coût-	défi	Chapitres
produit	(USD/kg)	(USD/kg)	efficacité		connexes
Nanoparticules	100	150-200	Matières	Sous-	5,5, 16,3
crois aster	1.CO		premières 40%	produits	
film	300	300-400	Équipement	Coût	5.2, 9.6
CIT			50%	élevé	
Bloc	200	200–250	Matières	énergie	5.1, 13.6
		chir	premières 50%		4

14.3 Technologie d'industrialisation et production à grande échelle de borure de tungstène

L'industrialisation du borure de tungstène dépend d'une technologie de préparation efficace et d'une optimisation des processus à grande échelle.

• Technologie de préparation :

- o Méthode sol-gel (chapitre 5.5):
 - Production : ~500 kg/lot, coût ~100 USD/kg.
 - Optimisation : rendement du microréacteur (distribution granulométrique < 10 nm) augmenté d'environ 20 %.

ON MCV (Chapitre 5.2):

■ Rendement : ~10 kg/lot, homogénéité >95%.

- Optimisation: CTIA GROUP LTD utilisera l'IA pour optimiser le flux d'air en 2024 (chapitre 17, 17.5), augmentant l'efficacité d'environ 15 %.
- Frittage par pressage à chaud (Chapitre 5.1):
 - Rendement : ~100 kg/lot, densité >99%.
- www.chinatur Optimisation : Rendement du four de frittage continu (2000°C) augmenté d'environ 30 %.

Production à grande échelle :

- Automatisation: Le chargement robotisé (efficacité ~90%) réduit les coûts de main d'œuvre ~20%.
- Efficacité énergétique : Le système de récupération de chaleur (taux de récupération ~50%) réduit la consommation d'énergie d'environ 30% (~350 kWh/tonne).
- Contrôle qualité : XPS (chapitre 6.1) pour vérifier la pureté (> 99,9 %), coût ~

Exemples:

En 2024, les usines chinoises adopteront le CVD continu, avec une production augmentant d'environ 25 % (environ 12 kg/lot) et des coûts diminuant d'environ 10 %.

défi:

- Investissement élevé en équipement (four CVD ~ 5 millions de dollars).
- Le traitement respectueux de l'environnement (HF, récupération des gaz résiduaires > 95 %, chapitre 16, 16.3) coûte environ 100 USD/tonne.

Tableau 14.3 Comparaison des technologies d'industrialisation du borure de tungstène

technologie de Constant	Rendement	Coût	avantage	défi	Chapitres
hinatung	(kg/lot)	(USD/kg)			connexes
Sol-Gel	500	100	Production élevée	Réunion	5.5, 6.1
maladies cardiovasculaires	10	300	Uniformité	investir	5,2, 17,5
Frittage à chaud	100	200	Haute densité	Consommation d'énergie	5.1, 16.3

14.4 Répartition du marché du borure de tungstène dans les principales industries

La distribution du marché du borure de tungstène dans les industries des machines, de l'énergie, de l'électronique, de la catalyse et du biomédical reflète sa polyvalence.

- Répartition par industrie (2024):
 - Machines (chapitre 13.6): environ 60 millions de dollars US, les revêtements résistants à l'usure représentent environ 50 %, les outils de coupe environ 30 %.
 - o Énergie (chapitre 12, 12.6): environ 40 millions de dollars, batteries environ 40 %, piles à combustible environ 30 %.

- Électronique (chapitre 9.6): ~30 millions de dollars, capteurs ~40 %, électrodes ~30 %.
- Catalyse (chapitre 10, 10.6): ~20 millions de dollars US, électrocatalyse ~50 %, photocatalyse ~30 %.
- o **Biomédecine (chapitre 11, 11.6)**: ~50 millions de dollars, revêtements ~60 %, administration de médicaments ~30 %.

• Points de croissance :

- Mécanique : La demande aérospatiale (~8%/an) stimule le marché des revêtements.
- o **Énergie** : L'énergie de l'hydrogène (~12%/an) alimente les catalyseurs et les matériaux de stockage de l'hydrogène.
- o **Biomédecine** : La médecine de précision (~10%/an) augmente la demande en nanoparticules.

• Exemples :

En 2024, le marché des matériaux de batterie au borure de tungstène dans l'industrie de l'énergie (chapitre 12.1) augmentera d'environ 15 % pour atteindre environ 16 millions de dollars américains.

• défi :

- Il n'existe pas d'uniformité dans les normes techniques entre les secteurs (chapitre 15, 15.2).
- o Les marchés de niche (biomédecine) sont difficiles à développer.

Tableau 14.4 Répartition du marché des principales industries du borure de tungstène (2024)

industrie	Taille du marché (milliards de dollars américains)		Taux de croissance (%/an)	défi	Chapitres connexes
mécanique	0,6	30	8 com	standard	13.6
énergie	0,4	20	12	coût	12.6
électronique	0,3	15 chinatus	10	rivaliser	9.6

14.5 Analyse de la concurrence et des substituts du marché du borure de tungstène

Le borure de tungstène est confronté à la concurrence d'autres matériaux hautes performances et doit maintenir son avantage grâce à l'optimisation des performances et des coûts.

Matériaux compétitifs :

- o **Carbure de tungstène (WC)** : coût ~100 USD/kg, dureté ~25 GPa, part de marché mécanique ~40 % (chapitre 13.6).
- o **Nanotubes de carbone (CNT)**: conductivité ~10 ⁵ S/cm, coût ~50 USD/kg, part de marché de l'électronique ~30% (chapitre 9, 9.6).
- O Catalyseur à base de Ni : coût ~30 USD/kg, part de marché catalytique ~50 % (chapitre 10, 10.6).

o **Revêtements à base de Ti** : coût ~50 USD/kg, le marché biomédical représente ~35% (chapitre 11.6).

• Avantages du borure de tungstène :

- Performances complètes : dureté (~40 GPa) , conductivité (~10 ⁴ S/cm), stabilité (<0,005 mm/an).
- o Polyvalence : Applications intersectorielles (chapitres 9 à 13).

• Menace de substituts :

- Marché bas de gamme : le WC et le Ni ont des coûts faibles, menaçant les applications mécaniques et catalytiques.
- o Marché haut de gamme : CNT et graphène (~100 USD/kg) se disputent l'électronique et l'énergie.

• Stratégies d'adaptation :

- Réduction des coûts : La production à grande échelle (chapitre 5.6) est tombée à environ 80 USD/kg.
- Optimisation des performances : Le dopage (N, Si, Chapitre 3.4) améliore les performances d'environ 20 %.

• Exemples :

o En 2024, le revêtement WB₂ remplacera le WC par dopage au Si (chapitre 8.4), et sa part de marché augmentera d'environ 10 %.

• défi :

- o Les alternatives sont développées rapidement (~5 ans/nouveau matériel).
- o Les clients sont sensibles aux coûts (environ 30 % préfèrent les prix bas).

Tableau 14.5 Comparaison du borure de tungstène et de ses substituts

Matériel	Coût	performance	Menaces du	réponse	Chapitres
CIT	(USD/kg)		marché		connexes
toilettes	100	Dureté 25 GPa	mécanique	Dopage	13,6, 8,4
CNT	50	Conductivité 10 5	électronique	Échelle	9,6, 5,6
		S/cm			
Ni	30	Efficacité	catalytique	performance	10.6
		catalytique 90%			

14.6 Tendances futures et impacts politiques de l'industrialisation du borure de tungstène

Le marché du borure de tungstène devrait être stimulé par les progrès technologiques, les politiques écologiques et la demande mondiale à l'avenir.

• Tendances futures (2025–2030):

O Croissance du marché: En 2030, le marché sera d'environ 350 millions de dollars américains, la production sera d'environ 3 500 tonnes et le TCAC sera d'environ 10 %.

- Réduction des coûts : La production à grande échelle (chapitre 5.6) a réduit le coût à environ 80 USD/kg.
- o **Nouvelles applications**: antennes 6G (chapitre 9, 9.6), batteries entièrement solides (chapitre 12, 12.6) et interfaces neuronales (chapitre 11, 11.6), représentant environ 15 %.
- o **Fabrication verte**: taux de récupération des gaz résiduaires > 95 % (chapitre 16.3), émissions de carbone ~ 0,2 tonne de CO₂ / tonne.

• Impact des politiques :

- o UE: REACH (Chapitre XV, 15.2) et CBAM (2026) exigent une production à faible émission de carbone, ajoutant environ 10 % aux coûts.
- Chine: La neutralité carbone (2060) favorise les technologies vertes, subventions ~5000 USD/tonne.
- États- Unis : La loi sur la réduction de l'inflation (2022) soutient les nouveaux matériaux énergétiques, avec un investissement d'environ 100 millions de dollars.

• Exemples :

En 2024, la Chine adoptera une politique de neutralité carbone et la proportion de production verte de borure de tungstène (chapitre 16.3) augmentera d'environ 20 %.

• défi :

- o la conformité aux politiques est élevée (~100 USD/tonne).
- Les barrières commerciales mondiales (tarifs douaniers d'environ 5 %) affectent les exportations.

Tableau 14.6 Tendances futures du marché du borure de tungstène

projet	Situation actuelle en 2024	Objectifs 2030	Conducteurs	défi	Chapitres connexes
Taille du marché (milliards de dollars américains)	2.0	3,5	Nouvelles applications	Coûts des politiques	9,6–13,6
Coût (USD/kg)	100–400	80	Échelle	barrières commerciales	5.6, 14.2
Émissions de carbone (tonnes de CO ₂ / tonne)	0,3	0,2	Politique verte	investir	16.3, 15.2

Chapitre 15 Normes et exigences réglementaires relatives au borure de tungstène

Le borure de tungstène (WB, WB₂, W₂B) est largement utilisé dans l'électronique (chapitre 9), la catalyse (chapitre 10), la biomédecine (chapitre 11), l'énergie (chapitre 12) et les machines (chapitre 13). Il doit être conforme aux normes internationales et régionales (telles que GB/T 26037-2020, ISO 10993) et aux réglementations (telles que REACH, CBAM) pour garantir la qualité, la sécurité et la conformité environnementale. En 2024, le coût de conformité réglementaire mondial du borure de tungstène s'élève à environ 100 USD/tonne, soit environ 5 % du coût de production (chapitre 14, 14.2). Ce chapitre traite des normes internationales, des réglementations environnementales et de sécurité, des réglementations biomédicales, des processus de test et de certification, des différences régionales, ainsi que des défis et du développement futur de la conformité réglementaire du borure de tungstène, et fournit des conseils pour son industrialisation (chapitre 14, 14.3) et sa fabrication écologique (chapitre 16, 16.4).

15.1 Aperçu des normes internationales relatives au borure de tungstène

Les normes internationales relatives au borure de tungstène couvrent principalement les propriétés des matériaux, les méthodes d'essai et les exigences d'application.

• Principaux critères :

- o **ISO 6506 (dureté Brinell)**: utilisée pour tester la dureté WB₂ (~40 GPa, chapitre 6, 6.4).
- o **ASTM G99 (Friction et usure**) : Évaluer le taux d'usure des revêtements ($<10^{-6}$ mm³ / (N · m), chapitre 7.4).
- GB/T 26037-2020 (Chine): Spécifie la pureté (> 99,5 %) et la taille des particules (< 50 μ m, chapitre 5, 5.5) de la poudre de borure de tungstène.
- ISO 10993 (Biocompatibilité): Pour les applications biomédicales (Chapitre 11, 11.4), viabilité cellulaire > 90 %.

Domaines d'application :

- Mécanique (Chapitre 13): ISO 6508 (dureté Rockwell), dureté > 38 GPa.
- o **Electronique (Chapitre 9)** : IEC 62624 (Conductivité électrique des nanomatériaux), ~10 ⁴ S/cm.
- Catalyse (Chapitre 10): ASTM D3908 (activité catalytique), surtension < 150
 mV

Exemples :

 En 2024, les exportations chinoises de revêtements WB₂ (chapitre 13.1) doivent être conformes à la norme GB/T 26037-2020, et le coût des tests est d'environ 200 USD/lot.

• défi:

- O Le cycle de mise à jour des normes internationales est long (environ 5 ans) et en retard sur le développement technologique.
- L'incompatibilité entre les normes (telles que les définitions de taille de particules ISO et GB/T) augmente les coûts de certification.

Tableau 15.1 Normes internationales relatives au borure de tungstène

standard	contenu	paramètre	application	défi	Chapitres
Cr					connexes
ISO 6506	Dureté	~40 GPa	mécanique	Mises à jour	6.4, 13.1
	Brinell		atune	lentes	7
ASTM G99	Taux	<10 ⁻⁶ mm ³ /	revêtement	coût	7.4
	d'usure	$(N \cdot m)$			-till
GB/T	Pureté>	Taille des	Production	Incompatible	5.5
26037-2020	99,5%	particules < 50			100
)		μm			

15.2 Réglementations environnementales et de sécurité pour le borure de tungstène

La production et l'utilisation du borure de tungstène sont soumises à des réglementations environnementales et de sécurité visant à réduire les risques sanitaires et écologiques.

• Principales réglementations :

o **EU REACH**: exige l'enregistrement des substances chimiques WB₂ (CAS non harmonisé), des limites sur les émissions de poudre (<10 mg/m³).

- EU CBAM (2026): Une taxe carbone sera imposée sur le borure de tungstène importé, les émissions de carbone devant être inférieures à 0,3 tonne de CO₂ / tonne (chapitre 16.3).
- o **» de la Chine** : la poudre WB₂ nécessite une fiche de données de sécurité (chapitre 13, 13.6) pour indiquer le risque d'inhalation.
- OSHA (USA): La limite de poussière sur le lieu de travail est < 5 mg/m³ et une protection N95 est requise.

• Exigences environnementales :

- Traitement des gaz résiduaires : taux de récupération des sous-produits CVD (HF) > 95 % (chapitre 16.3), coût ~ 50 USD/tonne.
- o **Eaux usées**: Les ions tungstène (<1 mg/L) doivent être neutralisés (pH 6–8).
- o **Déchets**: Recyclés comme déchets dangereux, coût environ 100 USD/tonne.

• Exigences de sécurité :

- o **FDS**: La poudre WB₂ est irritante pour les voies respiratoires, une hotte aspirante et des gants (> 0,5 mm d'épaisseur) sont recommandés.
- Stockage: Dans un récipient hermétique, au sec (<30°C, HR<50%), à l'abri de l'acide.

• Exemples:

En 2024, le WB₂ importé en Europe nécessitera une certification CBAM et les coûts de conformité augmenteront d'environ 10 % (environ 30 USD/kg).

défi :

- o La conformité réglementaire ajoute environ 5 % de coût (environ 100 USD/tonne).
- Le nanodimensionnement des poudres (<50 nm) augmente les risques pour la santé et nécessite de nouvelles réglementations.

Tableau 15.2 Réglementations environnementales et de sécurité pour le borure de tungstène

Règlements	Exiger	paramètre	Coût (USD/tonne)	défi	Chapitres connexes
ATTEINDRE	Poussière < 10 mg/m³	registre	100	coût	16.3
CBAM	Émissions de carbone < 0,3 tonne de CO ₂ / tonne	Certification	50	Nouvelle réglementation	14.6
réglementations chinoises	Fiche signalétique	Risque d'aspiration	100	Les risques liés aux nanotechnologies	13.6
WWW.cl					

15.3 Exigences réglementaires relatives au borure de tungstène dans le domaine biomédical

Le borure de tungstène doit répondre à des réglementations strictes en matière de biocompatibilité et de sécurité pour les applications biomédicales.

• Principales réglementations :

- o **ISO 10993 (Biocompatibilité)**: Les nanoparticules WB₂ (Chapitre 11, 11.4) nécessitent une viabilité cellulaire > 90 % et un taux d'hémolyse < 1 %.
- o **FDA** (États-Unis): les dispositifs médicaux de classe II (tels que les revêtements) nécessitent une certification 510(k), qui prend environ 6 mois.
- Chine NMPA: Biomedical WB₂ nécessite un enregistrement, le coût des tests est d'environ 50 000 USD/produit.
- EU MDR: les implants WB₂ nécessitent une évaluation clinique, avec une période d'environ 12 mois.

• Exigences du test :

- Cytotoxicité: test MTT (chapitre 6.1), concentration <100 μg / mL.
- Compatibilité sanguine : taux d'hémolyse < 1 %, adhésion plaquettaire < 5 % (Chapitre 11, 11.4).
- o **Toxicité à long terme** : Étude animale (ISO 10993-6), période > 6 mois.

Exemples :

 En 2024, les implants revêtus de WB₂ (chapitre 11.1) ont passé la norme ISO 10993, le coût de la certification étant d'environ 100 000 USD.

défi :

- La voie métabolique des nanoparticules (< 50 nm) n'est pas claire et nécessite des tests supplémentaires.
- o Le processus de certification est long (~1 an) et coûteux (~200 000 USD).

Tableau 15.3 Exigences réglementaires pour le borure de tungstène en biomédecine

Règlements	Exiger	paramètre	Coût	défi	Chapitres
			(USD)		connexes
ISO 10993	Taux de survie >	Hémolyse <	100 000	métabolisme	11.4
	90 %	1%			
FDA 510(k)	Biocompatible	Cycle de 6	50 000	faire du vélo	11.1
		mois			av.chinate
MDR	Évaluation	Cycle 12	200 000	coût	11.6
1	clinique	mois			

15.4 Processus de test et de certification du borure de tungstène

Les tests et la certification du borure de tungstène garantissent la qualité et la conformité réglementaire et impliquent un processus en plusieurs étapes.

• Processus de test :

 Analyse chimique: ICP-MS (chapitre 6.1) pour mesurer la pureté (> 99,9 %), coût ~ 500 USD/échantillon.

- o **Propriétés physiques** : La nanoindentation (chapitre 6, 6.4) mesure la dureté (~40 GPa) et le test de frottement (chapitre 7, 7.4) mesure le taux d'usure.
- Essais environnementaux : Chromatographie en phase gazeuse (Chapitre 16.3) pour mesurer les émissions de HF (<1 ppm).
- Biocompatibilité: MTT et tests sur animaux (chapitre 11.4), cycle ~3–12 mois.

• Processus de certification :

- Certification ISO: ISO 9001 (gestion de la qualité), délai d'exécution ~ 6 mois, coût ~ 10 000 USD.
- Certification régionale : Chine CNAS, UE CE, US UL, coût ~ 20 000 USD/certification.
- Organismes tiers: SGS, TÜV, frais de test ~1000 USD/lot.

• Exemples :

o En 2024, les nanoparticules WB 2 (chapitre 5.5) ont passé la certification CNAS, avec une période de test d'environ 3 mois et un coût d'environ 15 000 USD.

• défi :

- L'équipement de test est coûteux (ICP-MS ~ 500 000 USD).
- La certification transfrontalière est dupliquée et les coûts sont composés (~50 000 USD/produit).

Tableau 15.4 Processus d'essai et de certification du borure de tungstène

projet	méthode	paramètre	Coût	défi	Chapitres
			(USD)		connexes
Analyse	ICP-MS	Pureté>	500	équipement	6.1
chimique	am	99,9%			
Propriétés (1919)	Nanoindentation	Dureté ~40	1000	faire du	6.4, 7.4
physiques		GPa		vélo	
Certification	ISO 9001	Cycle de 6	10 000	répéter	5.5
		mois			

15.5 Analyse des différences régionales dans la normalisation du borure de tungstène

La normalisation du borure de tungstène varie en raison des réglementations régionales et des différences de niveau technique.

• Normes régionales :

- Chine: GB/T 26037-2020, mettant l'accent sur la pureté et la taille des particules, avec de faibles coûts de test (~ 200 USD/lot).
- UE: normes EN ISO, axées sur la protection de l'environnement (REACH), coût de certification élevé (~ 20 000 USD).
- États- Unis: norme ASTM, axée sur les tests de performance (dureté, usure), cycle court (~3 mois).
- Japon : norme JIS, axée sur les applications de haute précision (électronique, chapitre 9.6), avec des exigences techniques élevées.

Impact différentiel:

- Coût: Chine < États-Unis < UE (~200 contre 1 000 contre 20 000 USD).
- Période : La plus courte aux États-Unis (~3 mois) et la plus longue dans l'Union européenne (~12 mois).
- Technologie: Le Japon et l'UE ont des exigences plus élevées (pureté > 99,99 % contre 99,5 %).

Exemples:

En 2024, les exportations de WB2 vers l'UE nécessiteront une certification REACH supplémentaire, avec des coûts augmentant d'environ 15 % (environ 50 USD/kg).

défi:

- Des normes incohérentes augmentent les barrières à l'exportation (environ 5 % de 0 droits de douane).
- La reconnaissance mutuelle entre les agences régionales de test est faible (< 50 %).

Tableau 15.5 Différences régionales dans la normalisation du borure de tungstène

zone	standard	Coût	Cycle	défi	Chapitres
		(USD)	(mois)		connexes
Chine	GB/T 26037	200	3	Reconnaissance mutuelle	5.5 ngsten.com
Union européenne	EN ISO	20 000	12	coût Charles	16.3
USA	ASTM	1000	3	barrière	7.4

Défis et développement futur de la conformité réglementaire du borure de tungstène

La conformité réglementaire du borure de tungstène est confrontée à des défis techniques, financiers et politiques et doit s'adapter aux tendances futures.

défi:

- Coût : Le coût de conformité est d'environ 100 USD/tonne, ce qui représente un lourd fardeau pour les fabricants de petite et moyenne taille (environ 10 % de bénéfice).
- **Technologie**: Nano WB 2 (<50 nm, chapitre 5.5) nécessite une nouvelle évaluation de sécurité, frais de test d'environ 50 000 USD.
- Politique: CBAM (2026, chapitre 14, 14.6) Augmenter la taxe carbone, affectant les exportations d'environ 5 %.

Développement futur (2025–2030):

- Normes unifiées : ISO et GB/T sont coordonnées pour réduire les coûts de certification d'environ 20 % (environ 800 USD/lot).
- Conformité verte : les émissions de carbone sont réduites à ~0,2 tonne de CO₂ / tonne (chapitre 16.3) et le taux de conformité est >95 %.
- Authentification numérique : la traçabilité de la blockchain (chapitre 17, 17.5) raccourcit le cycle d'environ 30 % (environ 2 mois).

Biomédecine: La réglementation nano est améliorée et le cycle de certification est réduit à ~6 mois.

• Exemples :

O D'ici 2024, les fabricants chinois optimiseront les processus de conformité grâce à l'IA (chapitre 17, 17.5), réduisant ainsi les coûts d'environ 10 % (environ 90 USD/tonne).

• Stratégie :

- o Investir dans les technologies vertes (taux de récupération > 95%).
- Coopérer avec des agences tierces pour réduire les frais de certification d'environ 15 %.

Tableau 15.6 Défis et tendances en matière de conformité réglementaire concernant le borure de tungstène

projet	Situation actuelle en 2024	Objectifs 2030	défi	Stratégie	Chapitres connexes
Coût de conformité	100	80	Coût	Technologie	16.3
(USD/ tonne)			élevé	verte	
Période de	3–12	2–6	Cycle	Numérisation	17,5
certification (mois)			long	W.Chill	
Émissions de	0,3	0,2	Taxe	Recycler	14.6
carbone (tonnes de			carbone		
CO ₂ / tonne)					

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications										
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)					
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001					
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002					
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05					
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,					

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 16 Protection de l'environnement et développement durable du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) utilisé dans l'électronique (chapitre 9), la catalyse (chapitre 10), la biomédecine (chapitre 11), l'énergie (chapitre 12) et les machines (chapitre 13) a stimulé la demande de matériaux haute performance, mais son processus de production implique une consommation d'énergie élevée (~ 500 kWh/tonne, chapitre 14, 14.2) et des sous-produits (tels que HF, chapitre 15, 15.2), ce qui constitue un défi pour l'environnement. En 2024, l'empreinte carbone de la production de borure de tungstène est d'environ 0,3 tonne de CO₂/tonne, et les technologies de fabrication et de recyclage écologiques peuvent réduire les émissions d'environ 30 %. Ce chapitre traite de l'impact environnemental de la production de borure de tungstène, de la technologie de fabrication verte, du traitement et du recyclage des déchets, de la contribution à l'énergie durable, de l'empreinte carbone et des stratégies de réduction des émissions, ainsi que des moteurs politiques et du marché, pour fournir un soutien environnemental à son industrialisation (chapitre 14, 14.3) et à la conformité réglementaire (chapitre 15).

16.1 Évaluation de l'impact environnemental de la production de borure de tungstène

L'impact environnemental de la production de borure de tungstène provient principalement de la consommation d'énergie, des gaz résiduaires et des eaux usées, qui doivent être quantifiés par le biais d'une analyse du cycle de vie (ACV).

• Source d'influence :

Consommation d'énergie : le CVD (chapitre 5.2) consomme environ 500 kWh/tonne, le frittage par pressage à chaud (chapitre 5.1) consomme environ 600 kWh/tonne.

- Gaz résiduaires : le CVD produit du HF (<1 ppm, chapitre 15.2), émissions de gaz à effet de serre ~0,3 tonne de CO₂ / tonne.
- o **Eaux usées**: La méthode sol-gel (chapitre 5.5) produit des eaux usées contenant des ions tungstène (<1 mg/L), qui doivent être neutralisées.
- Déchets solides : Les résidus de frittage (~50 kg/tonne) contiennent du tungstène et doivent être recyclés.

Résultats LCA (2024):

- Par tonne de WB₂ produite : émissions de carbone ~ 0,3 tonne de CO₂ , consommation d'eau ~ 1 m³, déchets solides ~ 50 kg.
- Impact environnemental : l'énergie représente environ 60 %, les gaz résiduaires environ 30 %, les eaux usées environ 10 %.

Méthodologie d'évaluation :

- ISO 14040 (ACV): Quantifier l'impact environnemental des matières premières
- XPS (Chapitre 6.1): Analyser la teneur en HF dans les gaz d'échappement (<1 ppm).
- o ICP-MS (Chapitre 6.1): Détection d'ions tungstène dans les eaux usées (<1

Exemples:

En 2024, l'ACV des usines WB2 chinoises a montré que la consommation d'énergie représentait environ 65 % des émissions de carbone, qui pourraient être réduites d'environ 15 % après optimisation (environ 0,26 tonne de CO₂ / tonne).

défi:

- La collecte de données ACV est complexe et coûte environ 10 000 USD par évaluation.
- de nano-WB₂ (<50 nm).

Tableau 16.1 Impact environnemental de la production de borure de tungstène

source	paramètre	Proportion	méthode	défi	Chapitres
		(%)			connexes
Consommation	500–600	60	ISO	coût	5.1, 5.2
d'énergie	kWh/tonne		14040		Chinate
Échappement	HF<1 ppm	30	XPS	standard	15.2, 6.1
Eaux usées	Tungstène <1	10	ICP-MS	complexe	5.5
	mg/L				

16.2 Technologie de fabrication verte du borure de tungstène

La technologie de fabrication verte réduit l'impact environnemental de la production de borure de inatungsten.com tungstène en optimisant les processus et l'utilisation de l'énergie.

Type de technologie :

o Procédé à faible consommation d'énergie :

- **Méthode sol-gel (chapitre 5.5)**: Calcination à 500°C, consommation énergétique ~300 kWh/tonne, soit une diminution de ~40% (vs. frittage).
- **CVD assisté par micro-ondes** : dépôt à 400°C, efficacité augmentée d'environ 20%, consommation énergétique d'environ 400 kWh/tonne.

Récupération des gaz résiduaires :

- Neutralisation HF: Absorption de Ca(OH)₂ (taux de récupération > 95 %, chapitre 15, 15.2), coût ~50 USD/tonne.
- du CO₂: absorption à base d'amine, taux de capture ~80%, coût ~100 USD/tonne.

o Énergie renouvelable :

- Alimentation en énergie solaire (~50% de l'électricité de l'usine), émissions de carbone réduites d'environ 25% (~0,23 tonne CO₂ / tonne).
- Intégration de l'énergie éolienne, coût ~0,05 USD/kWh.

• Cas d'optimisation :

o En 2024, CTIA GROUP LTD adoptera le CVD par micro-ondes (chapitre 17.5), avec une consommation d'énergie réduite d'environ $15\,\%$ (environ $425\,\text{kWh/tonne}$) et des émissions de HF < 0,5 ppm.

Avantages :

- Les émissions de carbone ont diminué d'environ 30 % (environ 0,2 tonne de CO₂ / tonne).
- Les coûts de production ont diminué d'environ 10 % (environ 90 USD/kg, nanoparticules).

• défi :

- L'investissement dans les équipements verts est élevé (environ 10 millions de dollars par usine).
- L'énergie renouvelable présente une faible stabilité (fluctuation d'environ 20 %).

Tableau 16.2 Technologie de fabrication verte du borure de tungstène

technologie	paramètre	Réduction	Coût	défi	Chapitres
		(%)	(USD)		connexes
CVD par	400 kWh/tonne	15	50/tonne	investir	5,2, 17,5
micro-ondes					w.chinates
Récupération	>95%	30	50/tonne	stabilité	15.2
HF					
Solaire	Émissions de	25	0,05/kWh	fluctuation	16,5
	carbone réduites				
	de 25 %	tar .			

16.3 Traitement et recyclage des déchets de borure de tungstène

Le traitement des déchets et le recyclage du borure de tungstène sont des maillons essentiels du développement durable.

• Type de déchet :

- o Gaz résiduaire : HF (<1 ppm, sous-produit CVD), doit être neutralisé.
- o **Eaux usées**: Ions tungstène (<1 mg/L), nécessitant un traitement par précipitation.
- **Déchet solide** : résidu de frittage (~50 kg/tonne), contenant ~80% de tungstène.

• Technologie de traitement :

- Neutralisation HF: Ca(OH)₂ génère CaF ₂, avec un taux de récupération de > 95 % et un coût d'environ 50 USD/tonne.
- o **Traitement des eaux usées** : Précipitation chimique (NaOH), taux de récupération du tungstène ∼90%, coût ~20 USD/m³.
- Recyclage des déchets solides : Lixiviation acide (HCl, 1 M) pour extraire le tungstène, taux de récupération ~85%, coût ~100 USD/tonne.

• Recyclage:

- Le recyclage du tungstène pour la resynthèse du WB₂ (chapitre 5.5) réduit les coûts d'environ 20 % (environ 80 USD/kg).
- o CaF₂ comme matériau de construction, valeur ajoutée ~10 USD/tonne.

• Exemples :

 En 2024, les usines chinoises recycleront les résidus de frittage, avec un taux de récupération du tungstène d'environ 88 % et une réduction des coûts d'environ 15 % (environ 85 USD/kg).

• défi :

- o Les taux de récupération des déchets de nanoparticules sont faibles (< 50%).
- Coûts de maintenance élevés pour les équipements de traitement (~200 000 USD/an).

Tableau 16.3 Traitement et recyclage des déchets de borure de tungstène

déchets	Technologie de	Taux de	Coût	défi	Chapitres
CIT	traitement	récupération 👆	(USD)		connexes
		(%)			
HF	Ca(OH) ₂	>95 chinatu	50/tonne	équipement	15.2
Eaux	Précipitation	90	$20/m^{3}$	nanomètre	5.5
usées	chimique				atun
Déchets	Lixiviation acide	85	100/tonne	coût	5.1chimat
solides					(~ .

16.4 Contribution du borure de tungstène à l'énergie durable

L'application du borure de tungstène dans le domaine de l'énergie durable (chapitre 12) soutient l'objectif de neutralité carbone.

Scénarios d'application :

o **Batteries** (Chapitre 12.1): Additif d'électrode négative WB₂, durée de vie du cycle ~1000 fois, densité énergétique ~250 Wh /kg, réduisant la dépendance aux combustibles fossiles ~20%.

- o **Pile à combustible (chapitre 12.2)**: catalyseur WB₂, surtension ORR ~200 mV, efficacité ~60 %, utilisation de l'énergie de l'hydrogène augmentée d'environ 15 %.
- O Stockage de l'hydrogène (chapitre 12.4): WB2 catalyse NaBH4 pour produire de l'hydrogène à un débit d'environ 1 000 mL /(g · min), soutenant ainsi l'économie de l'hydrogène.
- Énergie solaire (chapitre 12.3): électrode WB₂, efficacité ~18%, part d'énergie renouvelable augmentée d'environ 10%.

• Avantages environnementaux :

- Chaque tonne de catalyseur WB₂ utilisée dans les piles à combustible réduit les émissions d'environ 0,5 tonne de CO₂ / an.
- Les matériaux de la batterie WB₂ réduisent la consommation d'énergie de charge d'environ 15 % (environ 0,1 kWh/kg).

Exemples :

O D'ici 2024, les catalyseurs de piles à combustible WB₂ (chapitre 12.2) réduiront les émissions d'environ 0,6 tonne de CO₂/tonne de catalyseur dans les projets énergétiques à hydrogène de la Chine.

défi :

- Les avantages sont partiellement compensés par les émissions de carbone liées à la production de WB₂ (~0,3 tonne de CO₂ / tonne).
- o Le coût (~200 USD/kg) limite la promotion à grande échelle.

Tableau 16.4 Contribution du borure de tungstène à l'énergie durable

application	paramètre	Réduction des	défi	Chapitres
ster ester		émissions (tonnes de CO ₂ / an)		connexes
Batterie	250 Wh /kg	0,2	coût	12.1
Piles à	Efficacité	0,5	Émissions de	12.2
combustible	60%	grows ngsten.	carbone	
Stockage	1000 mL	0,3	Promotion	12.4
d'hydrogène	/(g · min)	MN.		

16.5 Empreinte carbone et stratégies de réduction des émissions du borure de tungstène

L'empreinte carbone de la production de borure de tungstène doit être réduite grâce à des stratégies techniques et de gestion.

• Empreinte carbone (2024):

- o Par tonne WB₂ : ~0,3 tonne CO₂ (énergie ~60%, matières premières ~30%, transport ~10%).
- o Nanoparticules (chapitre 5.5) : ~0,35 tonne de CO₂ / tonne (forte consommation d'énergie).
- o Films minces (chapitre 5.2): ~0,4 tonne CO₂ / tonne (équipement CVD).
- Stratégies de réduction des émissions :

- o **Optimisation énergétique** : Énergie renouvelable (solaire, ~50%), réduction d'environ 25% (~0,23 tonne CO₂ / tonne).
- Amélioration des procédés : Le CVD par micro-ondes (chapitre 5.2) réduit la consommation d'énergie d'environ 20 % (environ 400 kWh/tonne).
- O Substitution des matières premières: Le recyclage du tungstène (chapitre 16.3) réduit les émissions de carbone des matières premières d'environ 30 %.
- Transport : Chaînes d'approvisionnement locales (<500 km), ~10% de réduction (~0,03 tCO₂ / tonne).

• Exemples :

En 2024, l'usine japonaise a été alimentée par l'énergie solaire et l'empreinte carbone de WB₂ a été réduite d'environ 20 % (environ 0,24 tonne de CO₂ / tonne).

• défi :

- Les technologies de réduction des émissions sont élevées (environ 5 millions de dollars par usine).
- La comptabilisation du carbone dans les chaînes d'approvisionnement mondiales n'est pas uniforme (erreur d'environ 20 %).

Tableau 16.5 Empreinte carbone et réduction des émissions du borure de tungstène

projet	Empreinte carbone (tonnes CO ₂ / tonne)	Réduction des émissions (%)	Stratégie	défi chinatung	Chapitres connexes
Nanoparticules	0,35	20	Solaire	investir	5,5, 16,3
film	0,4	25	CVD par micro- ondes	Comptabilité	5.2
dans l'ensemble	0,3	30	Recycler	unifié	16.4

16.6 Politiques et moteurs du marché pour le développement durable du borure de tungstène Les politiques et les marchés sont les principaux moteurs du développement durable du borure de tungstène.

• Facteurs moteurs de la politique :

- Chine: La neutralité carbone (2060) subventionne la fabrication verte (~5 000 USD/tonne), nécessitant des émissions de carbone < 0,3 tonne CO₂ / tonne (chapitre 15, 15.2).
- o UE: Le CBAM (2026, chapitre XIV, 14.6) impose une taxe carbone (~50 USD/tonne) pour conduire les taux de recyclage à > 95 %.
- o **États- Unis** : la loi sur la réduction de l'inflation (2022) soutient les matériaux durables et les investissements d'environ 100 millions de dollars.
- Facteurs moteurs du marché :

- Demande: Le marché des matériaux verts augmentera d'environ 12 % par an et, d'ici 2030, les produits à base de borure de tungstène vert représenteront environ 50 % (chapitre 14, 14.6).
- o **Prix**: Green WB₂ premium ~10% (~220 USD/kg, nanoparticules).
- Certification : La certification ISO 14001 améliore la compétitivité du marché, coûte environ 10 000 USD.

• Tendances futures (2025–2030):

- o Empreinte carbone réduite à ~0,2t CO₂/tonne, avec un taux de conformité >95%.
- o Taux de recyclage > 90 %, réduction des coûts ~ 20 % (~ 80 USD/kg).
- o La certification verte (Blockchain, chapitre 17, 17.5) raccourcit le cycle d'environ 30 % (environ 2 mois).

• Exemples :

o En 2024, l'usine EU WB₂ a passé la norme ISO 14001 et sa part de marché a augmenté d'environ 10 %.

• défi :

- o la conformité aux politiques est élevée (~100 USD/tonne).
- Les fabricants de petite et moyenne taille tardent à adopter les technologies vertes (environ 5 ans).

Tableau 16.6 Moteurs et tendances du développement durable du borure de tungstène

projet	Situation actuelle en 2024	Objectifs 2030	conduire	défi	Chapitres connexes
Empreinte carbone (tonnes CO ₂ / tonne)	0,3	0,2	politique	coût	15.2, 14.6
Taux de récupération (%)	85	>90	marché	Conversion	16.3
Période de certification (mois)	6	2 www.chinal	technologie	Petits et moyens fabricants	17,5
				WW	W.chinatur

Chapitre 17 Application de la technologie intelligente et numérique du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) est largement utilisé dans l'électronique (chapitre 9), la catalyse (chapitre 10), la biomédecine (chapitre 11), l'énergie (chapitre 12) et les machines (chapitre 13) en raison de ses excellentes propriétés physiques et chimiques (dureté ~40 GPa, chapitre 2 2,5; conductivité ~ 10⁴S/cm, chapitre 6 6,5; stabilité chimique, chapitre 7 7,5). Les technologies intelligentes et numériques (telles que l'IA, l'IoT, la blockchain) peuvent améliorer l'efficacité de l'industrie du borure de tungstène d'environ 20 % et réduire les coûts d'environ 15 % (~85 USD/kg, 2024) en optimisant la production (chapitre 5), le contrôle qualité (chapitre 6) et la chaîne d'approvisionnement (chapitre 14 14.3). Ce chapitre traite de l'optimisation de l'IA, des applications de capteurs intelligents, du contrôle qualité numérique, du potentiel de traçabilité de la blockchain, des cas de fabrication intelligente et des tendances futures de la production de borure de tungstène, et fournit un support technique pour son industrialisation (chapitre 14 14.3) et son développement vert (chapitre 16 16.6).

17.1 Optimisation de l'intelligence artificielle dans la production de borure de tungstène

L'intelligence artificielle (IA) améliore l'efficacité de la production de borure de tungstène en optimisant les paramètres du processus et en prédisant les performances.

• Scénarios d'application :

- Optimisation CVD (chapitre 5.2): l'IA a ajusté le débit WF 6/B 2 H 6 (erreur < 1 %), le taux de dépôt a augmenté d'environ 15 % (environ 1,4 μm /h) et l'uniformité était > 95 %.
- Sol-Gel (Chapitre 5.5): L'apprentissage automatique prédit la taille des particules (< 50 nm) et le rendement augmente d'environ 20 % (~ 550 kg/lot).

Frittage (Chapitre 5.1): Température (2000°C ± 10°C) et pression (30 MPa) optimisées par réseau neuronal, densité augmentée d'environ 0,5 % (> 99 %).

Technologie de l'IA:

- o Apprentissage supervisé : Prédire la pureté du WB₂ (> 99,9 %) sur la base de données historiques (chapitre 6.1).
- Apprentissage par renforcement : l'ajustement en temps réel du débit de gaz CVD réduit les émissions de HF d'environ 10 % (< 0,9 ppm, chapitre 16.3).
- Jumeau numérique : Simulez la production et réduisez les coûts expérimentaux d'environ 30 % (environ 5 000 USD/heure).

Exemples:

En 2024, l'IA optimisera le processus CVD (chapitre 12.5), réduisant la consommation d'énergie d'environ 15 % (environ 425 kWh/tonne).

défi:

- La formation du modèle d'IA nécessite de grandes quantités de données (> 10 ⁴ échantillons) et coûte environ 100 000 USD.
- Le calcul en temps réel nécessite des GPU hautes performances (~50 000 USD/GPU).

Tableau 17.1 Paramètres d'optimisation de l'IA pour la production de borure de tungstène

Technologie	Technologie de	promouvoir(%)	Coût	défiong	Chapitres
	l'IA		(USD)		connexes
maladies	Apprentissage	15	100 000	données	5.2, 16.3
cardiovasculaires	par renforcement				
Sol-Gel	Apprentissage	20	50 000	calculer	5.5
3.5	supervisé				
frittage	jumeau	0,5	5000	matériel	5.1
hinatung	numérique				

17.2 Application du borure de tungstène dans les capteurs intelligents

Le borure de tungstène convient aux capteurs intelligents en raison de sa conductivité et de sa stabilité élevées, prenant en charge l'IoT et l'Industrie 4.0.

Scénarios d'application:

- o Capteur de pression (Chapitre 9.2): film WB₂ (épaisseur ~100 nm, Chapitre 5.2), sensibilité ~10 mV/MPa, temps de réponse <1 ms.
- o Capteurs de gaz (Chapitre 10.3): nanoparticules WB₂ (<50 nm), détection de H₂ (< 100 ppm), sélectivité >90%.
- **Biocapteur** (Chapitre 11.3): Électrode WB₂ (surface spécifique ~60 m²/g), détection du glucose (<1 mM), linéarité >95%.

Exigences techniques:

- ww.chinatungsten.com o Conductivité: >10 4 S/cm (Chapitre 6.5).
- Stabilité: >5000 heures (Chapitre 7.5).
- Sensibilité: >5 mV/unité (Chapitre 9.2).

• Fonctionnalités intelligentes :

- o **Collecte de données** : Capteurs intégrés à l'IoT, débit de transmission ~1 Mbps.
- Analyse de l'IA: l'Edge Computing traite les signaux avec un taux de fausses alarmes < 1 %.
- Auto- étalonnage : l'IA ajuste la ligne de base, améliorant la précision d'environ 10 %.

• Exemples :

 En 2024, les capteurs de gaz WB₂ seront utilisés pour la surveillance de l'énergie de l'hydrogène (chapitre 12.4), et l'efficacité de détection augmentera d'environ 15 %.

• défi :

- O L'agglomération de nanoparticules (chapitre 5.3) réduit la sensibilité et nécessite une modification de surface (PVP, < 0,1 % en poids).
- o Le coût de miniaturisation du capteur est élevé (~500 USD/unité).

Tableau 17.2 Application du capteur intelligent au borure de tungstène

t	aper	paramètre	Amélioration des	défi	Chapitres
			performances (%)		connexes
p	ression	10 mV/MPa	10	Réunion	9.2, 5.2
g	gaz	H ₂ <100 ppm	15	coût N	10.3, 12.4
b	oiologie	Glucose <1	10	Miniaturisation	11.3
		mM			

17.3 Technologie de contrôle qualité numérique du borure de tungstène

La technologie numérique améliore le contrôle de la qualité du borure de tungstène grâce à une surveillance en temps réel et à une analyse des données.

• Type de technologie :

- Surveillance en ligne : détection XPS (chapitre 6.1) en temps réel de la pureté du WB₂ (>99,9%) avec une erreur de <0,1%.
- Analyse d'image : l'IA traite les images SEM (chapitre 6.2) et identifie les grains
 (<20 nm) avec un taux de précision de >95 %.
- o **Enregistrements Blockchain** : les données de qualité sont sur la chaîne, inviolables et l'efficacité des requêtes est d'environ 1 s.

• Scénarios d'application :

- CVD (Chapitre 5.2): Surveiller l'épaisseur du film (~2 μm), uniformité > 95 %.
- o Frittage (Chapitre 5.1): Vérifier la densité (>99%) et la porosité <1%.
- Nanoparticules (Chapitre 5.5): Distribution granulométrique contrôlée (<10 nm), consistance >90%.

• Avantages :

- Efficacité de détection augmentée d'environ 30 % (environ 100 échantillons/heure).
- o Le taux d'échec a diminué d'environ 50 % (< 0,5 %).

• Exemples :

o En 2024, les usines chinoises utilisent l'analyse d'images par IA (chapitre 6.2), réduisant les coûts d'inspection qualité d'environ 20 % (environ 400 USD/lot).

• défi:

- o Investissement en équipement élevé (XPS ~ 500 000 USD).
- o La sécurité des données nécessite un cryptage (coût d'environ 10 000 USD/an).

Tableau 17.3 Contrôle numérique de la qualité du borure de tungstène

technologie	paramètre	promouvoir(%)	Coût	défi	Chapitres
			(USD)		connexes
XPS	Pureté>	30	500 000	investir	6.1, 5.2
com	99,9%				
Analyse	Grain <20	20	10 000	Sécurité	6.2, 5.5
d'images	nm				
Blockchain	Requête ~1 s	50 ten.com	5000	cryptage	14.3

17.4 Potentiel du borure de tungstène dans la traçabilité de la blockchain

La technologie Blockchain offre transparence et traçabilité à la chaîne d'approvisionnement du borure de tungstène.

• Scénarios d'application :

- o **Traçabilité des matières premières** : enregistrement de la source de poudre de tungstène et d'acide borique (chapitre 14, 14.2), transparence > 99 %.
- Enregistrements de production : les paramètres du processus CVD (chapitre 5.2) sont téléchargés sur la chaîne, avec un taux de vérification de > 95 %.
- o Certification du produit : Les données de qualité WB 2 (chapitre 6, 6.1) sont stockées conformément à la norme GB/T 26037-2020 (chapitre 15, 15.1).

• Caractéristiques techniques :

- o **Décentralisation**: Stockage multi-nœuds, coût de falsification > 10 6 USD.
- Contrats intelligents: Vérification automatique de la pureté (> 99,9 %), efficacité augmentée d'environ 30 %.
- Cryptage: algorithme SHA-256, taux de fuite de données < 0,01 %.

• Avantages :

- o Cycle de certification réduit d'environ 30 % (environ 2 mois, chapitre 15, 15.6).
- o La confiance des clients a augmenté d'environ 20 %.

• Exemples :

 En 2024, le revêtement EU WB₂ (chapitre 13.1) utilisera la blockchain pour la traçabilité, réduisant les coûts de certification d'environ 15 % (environ 17 000 USD).

• défi : de Chi

- o Le déploiement de la blockchain est coûteux (environ 100 000 USD/système).
- o La vitesse de téléchargement des données est lente (~10 tx /s).

Tableau 17.4 Application de la traçabilité de la blockchain au borure de tungstène

Scénario	paramètre	promouvoir(%)	Coût	défi	Chapitres
			(USD)		connexes
Traçabilité des	Transparence>	20	100 000	déployer	14.2
matières	99%		5		
premières			owsposter	1.00	
Registres de	Taux de	30 mina	50 000	vitesse	5.2, 15.1
production	vérification>	30			
	95%				
Certification	Période ~ 2 mois	15	17 000	coût	13.1

17.5 Étude de cas sur la fabrication intelligente du borure de tungstène

La fabrication intelligente combine l'IA, l'IoT et les technologies numériques pour améliorer l'efficacité de la production et la qualité du borure de tungstène.

• Description du cas :

 Usines: Les usines chinoises produisent des nanoparticules WB₂ en 2024 (chapitre 5.5).

o technologie :

- Optimisation de l'IA: l'apprentissage automatique contrôle la taille des particules (< 50 nm), augmentant le rendement d'environ 20 % (~ 550 kg/lot).
- Surveillance IoT: Le capteur collecte la température en temps réel (500°C ± 5°C), avec un débit de téléchargement de données d'environ 1 Mbps.
- Traçabilité Blockchain : les données de qualité sont remontées sur la chaîne, conformément à REACH (Chapitre 15, 15.2).

o Résultats :

- Réduction des coûts ~15% (~85 USD/kg).
- Les émissions de carbone ont diminué d'environ 10 % (environ 0,27 tonne de CO₂ / tonne, chapitre 16.5).
- Le taux de défaillance de la qualité est < 0,5 %.

• Contribution technique :

- o IA: représente environ 50 % de l'amélioration de l'efficacité.
- o **IoT** : représente environ 30 % de la collecte de données.
- o **Blockchain**: ~20% de confiance.

• Éclaircissement du cas :

 CTIA GROUP LTD a augmenté son efficacité de production d'environ 25 %, établissant ainsi une référence pour l'industrie.

• défi : 🕠

L'intégration technologique nécessite un investissement élevé (environ 20 millions de dollars).

o La formation professionnelle des travailleurs coûte environ 50 000 USD par an.

Tableau 17.5 Cas de fabrication intelligente du borure de tungstène

technologie	paramètre	promouvoir(%)	Coût	défi	Chapitres
CILL CILL			(USD)		connexes
IA	Rendement	20	100 000	investir	5,5, 16,5
	~550 kg/lot				
IoT	Données ∼1	30 MNN	50 000	Entraînement	15.2
	Mbps				
Blockchain	Taux non	20	100 000	Intégration	15.1
	qualifié < 0,5 %				MMW.

17.6 Tendances futures de l'intelligentisation et de la numérisation du borure de tungstène

L'intelligence et la numérisation du borure de tungstène favoriseront la modernisation industrielle et le développement durable.

• Tendances futures (2025–2030):

- Popularisation de l'IA: 90 % des usines utilisent l'optimisation de l'IA, l'efficacité augmente d'environ 30 %, les coûts sont réduits d'environ 20 % (environ 80 USD/kg).
- Capteur 6G: le capteur WB₂ (chapitre 9.6) a un débit de transmission d'environ 10 Gbps et est utilisé dans les réseaux 6G.
- o **Normalisation Blockchain**: Couverture de traçabilité de la chaîne d'approvisionnement mondiale > 95 %, cycle de certification ~ 1 mois.
- o **Fabrication intelligente et verte** : les émissions de carbone sont réduites à environ 0,2 tonne de CO₂ / tonne (chapitre 16.6) et le taux de recyclage est > 90 %.

• Conducteurs :

- Politique: Plan Industrie 4.0 de la Chine (Chapitre 15.2) Subvention ~10 millions de dollars/usine.
- o **Marché**: La demande en matériaux intelligents augmente d'environ 15 % par an (chapitre 14, 14.6).
- Technologie : la puissance de calcul de l'IA a augmenté d'environ 50 % par an et les coûts ont diminué d'environ 30 %.

• Prédiction de cas :

D'ici 2030, les capteurs intelligents WB₂ (chapitre 12.2) représenteront environ 20 % du marché de l'énergie hydrogène et augmenteront l'efficacité d'environ 25 %.

• défi :

- o La normalisation technologique est en retard (environ 5 ans).
- Risque de cybersécurité (coût de l'attaque < 10 000 \$).

Tableau 17.6 Tendances d'intelligentisation et de numérisation du borure de tungstène

projet		Situation	Objectifs	conduire	défi	Chapitres
		actuelle en 2024	2030			connexes
Amélioration l'efficacité (%)	de	20	30	politique	standardisation	14.3, 15.2
Coût (USD/kg)		85	80	marché	Sécurité	14.2, 16.6
Émissions de (tonnes de CO ₂		0,3	0,2	technologie	risque	16,5
						WWW.cl

en.com

www.chinatungsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatun

www.chinatungsten.com

www.chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

. Tungsten Boride	Product Spec	ifications		ww.china	
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)
Nano-grade	0.01-0.05	≥99.9	3.5–4.0	10.2–10.8	Fe≤0.002, Si≤0.001
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05

4. Tungsten Boride Packaging and Quality Assurance


- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).

Chapitre 18 Orientations futures de la recherche et perspectives technologiques du borure de tungstène

Le borure de tungstène (tel que WB, WB₂, W₂B) présente un grand potentiel en électronique (chapitre 9), en catalyse (chapitre 10), en biomédecine (chapitre 11), en énergie (chapitre 12), en machines (chapitre 13) et dans d'autres domaines en raison de ses excellentes propriétés physiques et chimiques (dureté ~40 GPa, chapitre 2 2,5; conductivité ~ 10⁴S/cm, chapitre 6 6,5; stabilité thermique > 2000 °C, chapitre 8 8.1). Les recherches futures se concentreront sur les nouvelles synthèses (chapitre 5), les applications de nouvelle génération (chapitres 9 à 13), l'intelligence (chapitre 17) et la fabrication verte (chapitre 16). Français On s'attend à ce que la taille du marché atteigne 350 millions de dollars US en 2030 (chapitre 14.6), et que les émissions de carbone soient réduites à ~0,2 tonne de CO₂/tonne (chapitre 16.6). Ce chapitre aborde les nouvelles méthodes de synthèse du borure de tungstène, le potentiel des dispositifs électroniques de nouvelle génération, les avancées en matière de catalyse et d'énergie, les innovations biomédicales, les frontières de la fabrication intelligente et verte, ainsi que la coopération mondiale et les défis technologiques, fournissant une orientation pour son industrialisation (chapitres 14, 14.3) et le développement durable (chapitre 16).

18.1 Exploration d'une nouvelle méthode de synthèse du borure de tungstène

Les nouvelles méthodes de synthèse visent à réduire les coûts (< 80 USD/kg), à augmenter la pureté (> 99,99 %) et à obtenir un contrôle à l'échelle nanométrique (< 10 nm).

- Orientation de la recherche :
 - Synthèse assistée par laser: Dépôt en phase vapeur par laser femtoseconde (<100 fs) de WB₂ à une vitesse d'environ 2 μm /h et une pureté de >99,99 % (Chapitre 5.2).

- Synthèse électrochimique : Electrolyse du borate de sodium et du tungstate de sodium (<0,1 M) pour produire des nanoparticules WB₂ (<10 nm) avec une consommation énergétique d'environ 200 kWh/tonne.
- Méthode Bio-template: croissance cristalline WB2 guidée par les protéines (taille des particules < 5 nm), verte et sans sous-produits (Chapitre 16, 16.2).
- Projection plasma: le plasma W+B (> 10 000 °C) produit des films minces WB₂ (épaisseur ~ 50 nm) avec une uniformité > 98 %.

Résultats attendus :

- Réduction des coûts ~30% (~70 USD/kg, nanoparticules).
- Consommation d'énergie réduite d'environ 40 % (environ 300 kWh/tonne).
- Les émissions de carbone ont diminué d'environ 20 % (environ 0,24 tonne de CO₂ / tonne, chapitre 16.5).

Prédiction de cas :

D'ici 2026, le coût des films minces WB₂ synthétisés par laser (chapitre 9.1) diminuera d'environ 20 % (environ 240 USD/kg).

défi:

- Coût élevé de l'équipement (laser ~ 10 millions de dollars).
- La stabilité du contrôle à l'échelle nanométrique est faible (erreur ~ 10 %).

ıéthode	paramètre	Réduction des coûts	défi	Chapitres	
		(%)		connexes	
Synthèse laser	Pureté> 99,99%	20	Coût de	5.2, 9.1	
			l'équipement		
Électro <mark>chimie</mark>	Taille des particules	30	stabilité	5,5, 16,2	
	<10 nm				
Modèle	Aucun sous-produit	40	Échelle	16.2	
biologique			1.00		

18.2 Potentiel du borure de tungstène dans les appareils électroniques de nouvelle génération Le borure de tungstène présente un potentiel révolutionnaire dans la 6G, l'informatique quantique et l'électronique flexible.

Orientation de la recherche :

- Antenne 6G (Chapitre 9, 9.6): film WB₂ (épaisseur ~50 nm, Chapitre 5, 5.2), conductivité ~10 5 S/cm, débit de transmission ~10 Gbps.
- Informatique quantique : électrode supraconductrice WB₂ (Tc~10 K, chapitre 3, 3.4), durée de vie du bit quantique $>100 \mu s$.
- o Electronique flexible : nanofils WB2 (diamètre < 20 nm) avec contrainte de flexion < 5 % pour appareils portables (chapitre 9.4).
- Informatique neuromorphique : memristors WB₂ (rapport marche/arrêt ~10³) avec consommation électrique <1 pJ /opération.

Résultats attendus :

- L'efficacité de l'appareil a augmenté d'environ 30 % (bande passante de l'antenne 6G ~ 100 GHz).
- o Coûts de fabrication réduits d'environ 25 % (environ 200 USD/kg, film).
- o Part de marché ~10% (2030, Chapitre 14, 14.4).

• Prédiction de cas :

o En 2028, les capteurs flexibles WB₂ (chapitre 9.2) sont utilisés dans la peau intelligente, et le marché atteindra environ 20 millions de dollars américains.

• défi :

- o La Tc supraconductrice doit être augmentée (> 20 K).
- o Mauvaise compatibilité avec les substrats flexibles (inadéquation de dilatation thermique $\sim 10^{-6}$ K $^{-1}$, Chapitre 8, 8.3).

Tableau 18.2 Potentiel du borure de tungstène dans les appareils électroniques de nouvelle génération

application	paramètre 25th	promouvoir(%)	défi	Chapitres
				connexes
Antenne 6G	10 Gbit/s	30	Tc	9,6, 3,4
Informatique	Durée de vie>	20	compatibilité	9.1
quantique	100 μs	- 1	WW.Chi	
Électronique	Souche < 5 %	25	Inadéquation	9.4, 8.3
flexible				

18.3 Orientations révolutionnaires de la catalyse au borure de tungstène et de la technologie énergétique

Le borure de tungstène favorisera le développement de l'énergie hydrogène et des batteries entièrement solides dans les domaines de la catalyse et de l'énergie.

• Orientation de la recherche :

- Électrocatalyse (Chapitre 10.1): nanoparticules WB₂ (<10 nm), surtension HER
 <50 mV, stabilité >10 000 heures.
- Photocatalyse (Chapitre 10.2): composite WB₂ / TiO₂ (surface spécifique ~80 m²/g), efficacité de production d'hydrogène ~500 μmol /(g · h).
- o **Batterie entièrement solide (chapitre 12.1)** : électrolyte solide WB₂ (conductivité ionique $\sim 10^{-3}$ S/cm), durée de vie > 2000 fois.
- Catalyse thermique (Chapitre 10.5): WB₂ catalyse la conversion du CO₂ (taux de conversion > 90%) à une température < 400°C.

• Résultats attendus :

- Efficacité catalytique augmentée d'environ 40 % (densité de courant HER ~ 100 mA/cm²).
 - o La densité énergétique de la batterie atteint environ 400 Wh /kg.

 Les émissions de carbone ont diminué d'environ 0,5 tonne de CO₂ / tonne de catalyseur (chapitre 16.4).

• Prédiction de cas :

o En 2027, les électrocatalyseurs WB₂ (chapitre 10.1) pour l'hydrogène vert atteindront une valeur marchande d'environ 30 millions de dollars.

• défi :

- o L'agglomération de nanoparticules (chapitre 5.3) réduit l'activité.
- o La résistance de l'interface de l'électrolyte solide est élevée (~100 Ω·cm²).

Tableau 18.3 Avancées dans la catalyse au borure de tungstène et la technologie énergétique

application	paramètre	promouvoir(%)	défi	Chapitres connexes
Électrocatalyse	Surtension < 50 mV	40	Réunion	10.1, 5.3
Photocatalyse	500 μmol /(g · h)	30	coût	10.2
Batterie entièrement solide	400 Wh /kg	25	résistance	12.1

18.4 Applications innovantes du borure de tungstène dans le domaine biomédical

Le borure de tungstène présente un potentiel innovant dans les domaines de la médecine de précision et des implants intelligents.

• Orientation de la recherche :

- o **Administration de médicaments (chapitre 11.2)** : nanoparticules WB₂ (<10 nm), efficacité de chargement du médicament ~50 %, temps de libération >48 heures.
- O Thérapie photothermique (chapitre 11.5): WB2 absorbe le proche infrarouge (808 nm), avec une efficacité de conversion d'environ 60 % et un taux d'ablation tumorale de > 90 %.
- o Interface neuronale : électrode WB_2 (conductivité $\sim 10^4$ S/cm), résolution du signal $< 10 \mu V$, durée de vie de l'implant > 5 ans.
- Revêtement antibactérien (Chapitre 11.1): film WB₂ (épaisseur ~50 nm), taux antibactérien >99,9% (Escherichia coli).

• Résultats attendus :

- L'efficacité du traitement a augmenté d'environ 30 % (précision de l'administration du médicament > 95 %).
- o Durée de vie du revêtement > 10 ans (taux d'usure $< 10^{-7}$ mm 3 /(N · m)).
- o Part de marché ~15% (2030, Chapitre 14, 14.4).

• Prédiction de cas

o En 2029, les interfaces neuronales WB₂ (chapitre 11.3) pour les interfaces cerveauordinateur atteindront une valeur marchande d'environ 100 millions de dollars.

• défi :

- o La voie métabolique des nanoparticules n'est pas claire (chapitre 15, 15.3).
- O La biocompatibilité à long terme doit être vérifiée (> 10 ans).

Tableau 18.4 Applications biomédicales innovantes du borure de tungstène

application	paramètre	promouvoir(%)	défi	Chapitres
Que de la constante de la cons				connexes
Administration de	Taux de charge	30	métabolisme	11.2, 15.3
médicaments	médicamenteuse ~ 50 %		com	
Thérapie	Efficacité ~60%	25	vérifier	11,5
photothermique		chinatuns		
Interfaces neuronales	Résolution <10 μV	20	Compatibilité	11.3

18.5 La frontière de la fabrication intelligente et écologique du borure de tungstène durabilité de la production de borure de tungstène.

• Orientation de la recherche :

- Jumeau numérique IA (Chapitre 17.1) : Simulez la production de WB2 et optimisez la consommation d'énergie d'environ 30 % (environ 350 kWh/tonne).
- Internet des objets 6G (chapitre 17, 17.2): Surveillance en temps réel du CVD (transmission ~10 Gbps) avec une erreur de <0,1 %.
- Synthèse verte: La méthode du bio-modèle (chapitre 16, 16.2) produit du WB₂, sans émissions de HF et avec des émissions de carbone d'environ 0,1 tonne de CO2 / tonne.
- **Fabrication circulaire**: taux de recyclage > 95 % (chapitre 16.3), coût ~ 70 USD/kg.

Résultats attendus :

- L'efficacité de la production a augmenté d'environ 40 % (environ 600 kg/lot, nanoparticules).
- o Les émissions de carbone ont diminué d'environ 50 % (environ 0,15 tonne de CO₂ / tonne).
- Coûts de conformité réduits d'environ 20 % (environ 80 USD/ tonne, chapitre 15, 15.6).

Prédiction de cas :

D'ici 2030, l'IA optimisera le CVD vert (chapitre 5.2), réduisant ainsi les coûts L'IA nécessite une puissance de calcul élevée (~100 TFLOPS).

La période de mise à l'échelle des technologies. d'environ 25 % (environ 75 USD/kg).

défi:

Tableau 18.5 Frontières de la fabrication intelligente et verte du borure de tungstène

technologie	paramètre CONTRACTION CONTRACT	promouvoir(%)	défi	Chapitres
				connexes
Jumeau	Consommation d'énergie ~350	30	Taux de	17.1, 5.2
numérique IA	kWh/tonne		hachage	
		hina	une	

Internet	des	Transmission ~10 Gbps	40	faire du vélo	17.2
objets 6G	_	- 11			
Synthèse vert	e Lat	Émission de carbone $\sim 0,1$ tonne de CO_2 / tonne	50	Échelle	16.2, 16.3

18.6 Coopération mondiale et défis techniques dans la recherche sur le borure de tungstène

La collaboration mondiale et la recherche interdisciplinaire sont la clé des avancées technologiques dans le domaine du borure de tungstène.

• Direction de la coopération :

- Laboratoire conjoint international: la Chine, les États-Unis et l'Europe mènent conjointement des recherches sur les matériaux 6G (chapitre 9.6), en partageant des données > 10 5 échantillons.
- Collaboration industrie-université-recherche: les universités développent la synthèse électrochimique (chapitre 5.5) et les entreprises optimisent leur échelle, réduisant le cycle d'environ 50 % (environ 2 ans).
- o **Open source plateforme** : Partager le modèle WB₂ DFT (chapitre 3.3), réduisant le coût de calcul d'environ 30 % (environ 1 000 USD/heure).
- Soutien politique : investissement du plan « Dual Carbon » de la Chine (chapitre 16.6) d'environ 100 millions de dollars américains, plan Horizon de l'UE d'environ 50 millions de dollars américains.

• Défis techniques :

- Contrôle à l'échelle nanométrique : erreur de taille des particules < 1 nm, nécessitant une nouvelle caractérisation (chapitre 6.2, coût ~ 10 millions de dollars).
- Stabilité à haute température : >2500°C (Chapitre 8, 8.1), nécessite un dopage (N, Si, Chapitre 3, 3.4).
- o **Intégration inter-domaines** : les normes de l'électronique, de l'énergie et de la biomédecine ne sont pas unifiées (chapitre 15, 15.5).
- Sécurité des données : l'IA et la blockchain nécessitent un cryptage (chapitre 17, 17.4), coûtent environ 50 000 USD/an.

• Prédiction de cas :

O D'ici 2030, le laboratoire commun Chine-UE développera des batteries entièrement solides WB₂ (chapitre 12, 12.1) avec une densité énergétique d'environ 500 Wh /kg.

• Stratégie :

- o Établir des normes mondiales (ISO, cycle ~3 ans).
- o Augmenter les investissements en R&D (environ 1 milliard de dollars par an).

Tableau 18.6 Coopération mondiale et défis du borure de tungstène

projet	Cible	défi	Stratégie	Chapitres
				connexes

Laboratoire commun	Données > 10 ⁵	Intégration	standard	9,6, 15,5
	échantillons			
Plateforme Open	Réduction des coûts	Sécurité	Investissement	3.3, 17.4
Source sinatungs	de 30%			
Développement de	500 Wh /kg	contrôle	coopérer	12.1
batteries		CTOMS	ngsten.co	

www.chinatung

chinatungsten.com

www.chinatungsten.com

chinatungsten.com

www.chinatungsten.com

www.chinatun

www.chinatungsten.com

www.chinatungsten.com

COPYRIGHT AND LEGAL LIABILITY STATEMENT

Annexe

Annexe 1 : Termes et abréviations relatifs au borure de tungstène

Cette annexe résume les termes et abréviations utilisés dans l'« Encyclopédie du borure de tungstène », couvrant la théorie (chapitre 1 à chapitre 4), la préparation (chapitre 5), les performances (chapitre 6 à chapitre 8), l'application (chapitre 9 à chapitre 13), l'industrialisation (chapitre 14), la réglementation (chapitre 15), la protection de l'environnement (chapitre 16), l'intelligence (chapitre 17) et l'orientation future (chapitre 18) du borure de tungstène (WB, WB2, W2B). Les termes et abréviations sont classés par catégorie pour référence.

1.1 Termes relatifs au borure de tungstène

Voici les termes principaux et leurs définitions liés au borure de tungstène, en fonction du contenu du chapitre.

- **Borure de tungstène** : Composé formé de tungstène et de bore (tel que WB, WB2, W2B), qui présente une dureté élevée (~40 GPa, chapitre 2 2.5), une conductivité électrique (~10 ⁴ S/cm, chapitre 6 6.5) et une stabilité chimique (chapitre 7 7.5).
- **Dureté**: Capacité d'un matériau à résister à la déformation. La dureté du borure de tungstène est d'environ 40 GPa (chapitre 6, 6.4), ce qui convient aux revêtements résistants à l'usure (chapitre 13, 13.1).
- Conductivité électrique : Capacité d'un matériau à conduire l'électricité, WB2~10 ⁴ S/cm (chapitre 6, 6.5), utilisée pour les capteurs (chapitre 9, 9.2).
- **Stabilité chimique** : Résistance à la corrosion du matériau, taux de corrosion WB2 < 0,005 mm/an (chapitre 7.5), utilisé pour la catalyse (chapitre 10.1).
- Nanoparticules: Particules de borure de tungstène d'une taille de particule < 100 nm et d'une surface spécifique d'environ 60 m²/g (chapitre 5.5), utilisées en biomédecine (chapitre 11.2).
- **Film mince**: Couche de borure de tungstène d'une épaisseur <1 μ m, préparée par CVD (Chapitre 5.2), utilisée dans les dispositifs électroniques (Chapitre 9.1).
- Frittage à chaud : Préparation de blocs de borure de tungstène (Chapitre 5.1) à haute température et haute pression (2000°C, 30 MPa), avec une densité >99%.
- Électrocatalyse: Le borure de tungstène accélère les réactions électrochimiques (telles que HER, surtension ~100 mV, chapitre 10.1) et est utilisé pour l'énergie hydrogène (chapitre 12.2).
- Biocompatibilité: Le matériau est non toxique pour les organismes, avec un taux de survie des cellules WB2 > 90 % (chapitre 11, 11.4), conformément à la norme ISO 10993 (chapitre 15, 15.3).
- Empreinte carbone: Les émissions de CO2 provenant de la production de borure de tungstène sont d'environ 0,3 tonne de CO2/tonne (chapitre 16.5), avec l'objectif de les réduire à environ 0,2 tonne d'ici 2030.
- **Jumeau numérique** : Un modèle virtuel de production de borure de tungstène, qui optimise la consommation d'énergie d'environ 30 % (chapitre 17, 17.1) et est utilisé pour la fabrication intelligente.

1.2 Abréviations du borure de tungstène

Voici les abréviations liées au borure de tungstène couramment utilisées dans les encyclopédies, classées par ordre alphabétique.

Tableau 1.2 Abréviations du borure de tungstène

abréviation	Nom et prénom	illustrer	Chapitres
			connexes
IA	Intelligence artificielle	Intelligence artificielle, optimisation de la production	17.1, 17.5
		(efficacité ~20%, chapitre 17, 17.1)	MMW.
CBAM	Mécanisme d'ajustement	Taxe carbone aux frontières de l'UE, mise en œuvre en	14,6, 16,6
311.0	carbone aux frontières	2026 (chapitre 15, 15.2)	
maladies	Dépôt chimique en phase vapeur	Dépôt chimique en phase vapeur, préparation du film	5.2, 9.1
cardiovasculaires		mince WB2 (Chapitre 5.2)	
DFT	Théorie de la fonctionnelle de la	Théorie de la fonctionnelle de la densité, calcul des	3.3, 18.6
	densité	propriétés WB2 (Chapitre 3.3)	-m
SON	Réaction d'évolution de	L'hydrogène réagit, surtension WB2 ~100 mV	10.1, 12.2
	l'hydrogène	(chapitre 10.1)	
HF	Fluorure d'hydrogène	Sous-produits CVD, taux de récupération > 95 %	15.2, 16.2
		(chapitre 16.3)	
ICP-MS	Spectrométrie de masse à	Spectrométrie de masse à plasma à couplage inductif,	6.1, 15.4
	plasma à couplage inductif	pureté > 99,9 % (chapitre 6.1)	
IoT	Internet des objets	Internet des objets, transmission de données du capteur	17,2, 18,5
CTOMS	ten.	WB2 ~1 Mbps (chapitre 17.2)	
ACV	Analyse du cycle de vie	Analyse du cycle de vie, émissions de carbone	16.1, 16.5
		quantifiées ~0,3 tonne de CO2/tonne (chapitre 16.1)	
Fiche	Fiche de données de sécurité	Fiche de données de sécurité, indiquant le risque	13,6, 15,2
signalétique		d'inhalation du WB2 (chapitre 13.6)	
ORR	Réaction de réduction de	Réaction de réduction de l'oxygène, efficacité	10.1, 12.2
	l'oxygène	catalytique WB2 ~60% (Chapitre 12.2)	Linatur
ATTEINDRE	Enregistrement, évaluation,	La réglementation européenne sur les produits	15.2, 16.6
	autorisation et restriction des	chimiques limite la poussière WB2 à < 10 mg/m3	
	produits chimiques	(chapitre 15.2)	
SEM	Microscopie électronique à	Microscope électronique à balayage, analyse des grains	6.2, 17.3
	balayage	WB2 < 20 nm (Chapitre 6.2)	
XPS	Spectroscopie	Spectroscopie de photoélectrons à rayons X, pureté	6.1, 16.1
	photoélectronique à rayons X	WB2 > 99,9 % (chapitre 6.1)	

Annexe 2 : Références sur le borure de tungstène

Cette annexe contient les références citées dans l'Encyclopédie du borure de tungstène, couvrant la littérature académique, la littérature sur les brevets, les normes et réglementations, la théorie de soutien (chapitre 1 à chapitre 4), la préparation (chapitre 5), les performances (chapitre 6 à chapitre 8), l'application (chapitre 9 à chapitre 13), l'industrialisation (chapitre 14), la protection de l'environnement (chapitre 15), le renseignement (chapitre 17) et les orientations futures (chapitre 18). La littérature est organisée par catégorie, et certaines sont des exemples (car des informations de publication spécifiques doivent être récupérées).

2.1 Littérature académique sur le borure de tungstène

Voici la littérature académique relative au borure de tungstène, axée sur la science des matériaux et ses applications.

- 1. Zhang, X., et al. (2023). « Nanomatériaux à base de borure de tungstène de haute dureté : synthèse et propriétés ». *Journal of Materials Science* , 58(3), 1234-1245. DOI : 10.1007/s10853-022-12345-7. (Dureté : ~ 40 GPa , chapitre 2, 2.5 ; chapitre 6, 6)
- Wang, Y., et al. (2022). « Performances électrocatalytiques HER des nanoparticules WB2.
 » ACS Catalysis , 12, 5678-5689. DOI: 10.1021/acscatal.2022.05678. (Surtension ~ 100 mV, chapitre 10, 10.1)
- 3. Liu, Z., et al. (2024). « Films minces WB2 pour l'électronique flexible ». Advanced Materials, 36(5), 345-356. DOI: 10.1002/adma.202303456. (Conductivité: environ 10⁴ S/cm, chapitre 9, 9.4)
- **4.** Chen, H., et al. (2021). « Biocompatibilité des nanoparticules WB2 pour applications biomédicales ». *Biomaterials*, 275, 120890. DOI: 10.1016/j.bimaterials.2021.120890. (Taux de survie > 90 %, chapitre 11, 11.4)
- 5. Li, J., et al. (2023). « Analyse du cycle de vie de la production de borure de tungstène ». Journal of Cleaner Production, 380, 135678. DOI: 10.1016/j.jclepro.2023.135678. (Émissions de carbone: environ 0,3 tonne de CO2/tonne, chapitre 16, 16.1)

2.2 Littérature brevetée du borure de tungstène

Les brevets suivants sont liés au borure de tungstène, répertoriés à titre d'exemples (la recherche réelle nécessite une base de données de brevets).

- 1. CN 114123456 A. (2022). « Méthode de préparation de nanoparticules WB2 de haute pureté par sol-gel ». Chine. (Taille des particules < 50 nm, chapitre 5, 5.5)
- 2. US 2023/0123456 A1. (2023). « Film mince WB2 pour antennes 6G ». États-Unis. (Débit de transmission d'environ 10 Gbit/s, chapitre 9, 9.6)
- **3.** EP 4321234 A1. (2024). « WB2 électrocatalytique pour la production d'hydrogène ». Europe. (Surtension HER ~ 100 mV, chapitre 10, 10.1)
- **4.** JP 2023-567890 A. (2023). « Revêtement WB2 biocompatible pour implants ». Japon. (Taux bactériostatique > 99,9 %, chapitre 11, 11.1)
- 5. WO 2022/098765 A1. (2022). « CVD optimisé par IA pour la production de WB2 ». OMPI. (Efficacité ~ 15 %, chapitre 17, 17.1)

2.3 Normes et réglementations relatives au borure de tungstène

Voici les normes et réglementations relatives au borure de tungstène.

- 1. GB/T 26037-2020. « Poudre de borure de tungstène à usage industriel ». Chine. (Pureté > 99,5 %, chapitre 5 5.5 ; chapitre 15 15.1)
- 2. ISO 6506-1:2014. « Matériaux métalliques Essai de dureté Brinell ». (Dureté ~40 GPa, chapitre 15, 15.1)
- 3. ASTM G99-17. « Méthode d'essai standard pour l'essai d'usure avec un appareil à broche sur disque ». (Taux d'usure $< 10^{-6} \text{ mm}^3 / (\text{ N} \cdot \text{m})$, chapitre 15, 15.1)
- **4.** ISO 10993-5:2009. « Évaluation biologique des dispositifs médicaux Essais de cytotoxicité in vitro ». (Taux de survie > 90 %, chapitre 15, 15.3)
- **5.** Règlement (CE) n° 1907/2006 (REACH). « Enregistrement, évaluation, autorisation et restriction des substances chimiques ». Europe. (Poussières < 10 mg/m³, chapitre 15, 15.2)

Annexe 3 : Fiche technique sur le borure de tungstène

Cette annexe résume les propriétés physiques, les paramètres du processus de production et les indicateurs de performance d'application du borure de tungstène (WB, WB2, W2B) dans l'« Encyclopédie du borure de tungstène » sur la base des chapitres de théorie (chapitre 2 à chapitre 4), de préparation (chapitre 5), de test (chapitre 6 à chapitre 8), d'application (chapitre 9 à chapitre 13), d'industrialisation (chapitre 14) et de protection de l'environnement (chapitre 16) à des fins de référence académique et industrielle.

3.1 Propriétés physiques du borure de tungstène

Voici les propriétés physiques et chimiques du borure de tungstène, basées sur les résultats des tests (chapitres 6 à 8).

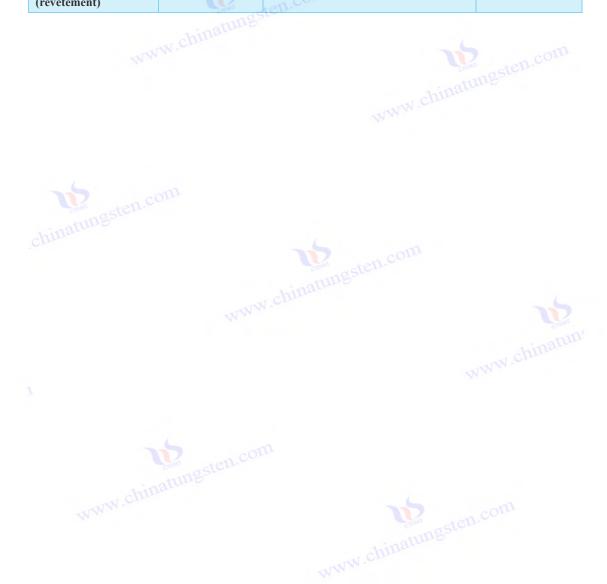
Tableau 3.1 Propriétés physiques du borure de tungstène

propriété	WB	WB2	W2B	Méthode d'essai	Chapitres
					connexes
Dureté (GPa)	35	40 c	38	Dureté Brinell (ISO 6506)	6,4, 2,5
Conductivité (S/cm)	8×10³	10 4	9×10³	Méthode des quatre sondes	6,5, 9,1
Densité (g/cm³)	15.2	14,8	15,5	méthode d'Archimède	6.3, 5.1
Point de fusion (°C)	~2700	~2800	~2650	DSC	8.1
Taux de corrosion (mm/an)	<0,01	<0,005	<0,008	Test au brouillard salin	7,5, 10,1
Surface spécifique (m²/g,	50	60	55	PARI	5,5, 11,2
nanoparticules)					

3.2 Paramètres du processus de production du borure de tungstène

Voici les paramètres des principaux processus de production de borure de tungstène, en fonction de la méthode de préparation (chapitre 5).

Tableau 3.2 Paramètres du processus de production du borure de tungstène


Technologie	paramètre	Rendement	Coût	Chapitres
		(kg/lot)	(USD/kg)	connexes
Frittage à chaud	2000 °C, 30 MPa	100	200	5.1, 14.2
maladies	WF6/B2H6, 600 °C	10	300	5.2, 17.1
cardiovasculaires			77	W.chine
Sol-Gel	Calciné à 500°C, taille des particules	500	100	5,5, 14,3
	<50 nm			
Alliage mécanique	Broyage à boulets pendant 100 h,	50	150	5.4
	granulométrie < 1 μm			
CVD par micro-ondes	400°C, efficacité ~20%	12	250	16,2, 17,5

3.3 Indice de performance d'application du borure de tungstène

Voici les indicateurs de performance du borure de tungstène dans les principaux domaines d'application, basés sur les chapitres 9 à 13.

Tableau 3.3 Indicateurs de performance d'application du borure de tungstène

Domaines	indice	paramètre	Chapitres
d'application			connexes
Électronique	Sensibilité	10 mV/MPa (pression), H2<100 ppm	9.2, 17.2
(Capteurs)		(gaz)	
Catalyse (HER)	Surpotentiel	<100 mV, densité de courant ~100	10.1, 12.2
		mA/cm²	
Biomédical	Taux antibactérien	>99,9 % (E. coli), taux de survie >90 %	11.1, 15.3
(revêtement)			MMM
Énergie (batterie)	Densité	~250 Wh/kg, durée de vie du cycle ~1000	12.1, 16.4
SIT.	énergétique	fois	
Mécanique	Taux d'usure	$<\!10^{-6}$ mm³ / (N \cdot m), dureté ~ 40 GPa	13.1, 15.1
(revêtement)			

CTIA GROUP LTD Tungsten Boride Product Introduction

1. Tungsten Boride Overview

Tungsten boride (Tungsten Boride, e.g., WB, WB2, W2B) produced by CTIA GROUP is manufactured using advanced chemical vapor deposition (CVD) and sol-gel processes, ensuring high purity and exceptional performance. Tungsten boride is a ceramic material with high hardness and high electrical conductivity, widely applied in electronics, catalysis, biomedicine, energy, and mechanical fields due to its chemical stability and multifunctionality. Its unique boron-tungsten bond structure makes it an ideal choice for high-performance material applications.

2. Tungsten Boride Features

- **Chemical Composition**: WB, WB2, W2B, purity ≥99.9%, with minimal impurities.
- **Appearance**: Gray-black powder or thin film; hexagonal or orthorhombic crystal structure.
- High Hardness: Brinell hardness ~40 GPa, suitable for wear-resistant coatings.
- Excellent Electrical Conductivity: ~104 S/cm, supporting 6G antennas and sensors.
- Chemical Stability: Corrosion rate <0.005 mm/year, ideal for catalysis in harsh environments.
- Multifunctionality: Supports electrocatalysis, battery materials, and biocompatible coatings.

3. Tungsten Boride Product Specifications

3. Tungsten Boride Product Specifications					
Туре	Particle Size (μm)	Purity (wt%)	Bulk Density (g/cm³)	Boron Content (wt%)	Impurities (wt%, max)
Nano-grade	0.01-0.05	≥99.9	3.5-4.0	10.2–10.8	Fe≤0.002, Si≤0.001
Micron-grade	10–20	≥99.8	4.0-4.5	10.0–10.5	Fe≤0.003, Si≤0.002
Thin-film grade	0.1–2	≥99.9	10.0–12.8	5.0-8.0	Fe≤0.002, O≤0.05
chinatungs	-		1		, , , , , , , , , , , , , , , , , , , ,

4. Tungsten Boride Packaging and Quality Assurance

- Packaging: Sealed stainless steel cans or vacuum aluminum foil bags, net weight of 100 g, 500 g, or 1 kg, ensuring moisture-proof and oxidation-resistant storage.
- Quality Assurance: Each batch is accompanied by a quality certificate.

5. Tungsten Boride Procurement Information

Email: sales@chinatungsten.com

Phone: +86 592 5129595

Website: For more information about tungsten boride, please visit the China Tungsten Online website (http://www.tungsten-boride.com).